A TRUE ORDER RECURSIVE ALGORITHM FOR
TWO-DIMENSIONAL LEAST SQUARES ERROR
LINEAR PREDICTION AND FILTERING

George-Othon Glentis
TEI of Heraklion, Branch at Chania, Department of Electronics
3, Romanou Str, Halepa, Chania 73133, Greece

ABSTRACT

In this paper a novel algorithm is presented for the ef-
ficient Two-Dimensional (2-D), Least Squares (LS) FIR
filtering and system identification. Causal filter masks
of general boundaries are allowed. Efficient order up-
dating recursions are developed by exploiting the spa-
tial shift invariance property of the 2-D data set. Single
step order updating recursions are developed. During
each iteration, the filter coefficients set is angmented by
a single new element. The single step order updating
formulas allow for the development of an efficient, true
order recursive algorithm for the 22D LS causal linear
prediction and filtering.

1 Imntroduction

Two Dimensional Least Squares filtering and system i
dentification are of great importance in a wide range
of applications. These include image restoration, image
enhancement, image compression, 2-D spectral estima-
tion, detection of changes in image sequences, stochastic
texture modeling, edge detection etc, [1],[2],

Let 2(n1,ngz) be the mput of a linear, space invariant,
2D FIR filter. The filter’s output y(ni,ng) is a lin-
ear combination of past input values x(n; — ¢, ng — i3)
weighted by the filter coefficients c;, ;, over a support
region, or filter mask, M

yni,nz) =— Y iy

(i1,i2)EM

(n1 —i1,ny —dg) (1)

Two-Dimensional support regions of general causal
(first quarter) shapes are considered. Noncausal sup-
port regions can be handled in a similar way. Let M
can be causal. We write M as a union of horizontal
strips, as

M =U}_ m(i)
m(iy ) = {(i1,42) : 0 <dg < lo(dy)}

where, l; = max{i; : (i1,72) € M}, and [({1) =
HlaX{iz : (il,iz) € m(zl )}

Let us define the data vector x,(;,)(ni,nz2), for all
i1 € [0,11], which consists of all data laying on the i;-th

row, Le.,

m(é; ), of the filter mask M

[a:(nl — il,nz) x(nl — il,nz — 1)

z(ny —i1,ng — L(i1)) T

Superscript * means transpose. In a similar way, define
the coefficients vector corresponding to m(i;)

X (i, ) (M1, n2) =
z(ny — i1, ne — L(i1) + 1)

e . . . . . . . . t
Cn(iy) = [cllyo Ciy, 41 Ciy ka(in )42 -+« Cigla(in)—1 cll,lz(ll)]

Then, the data vector and the coefficients vector corre-
sponding to the mask M, take the form

XM (n1 ) nz) = [ :n(o) (nl ; nZ) X:n(l) (nl ; nz) e
m(h 1) (77,1 ) 77'2) :n(ll)(nl ) 77,2) ]t

t
Cm= [ :n(O) :,1(1) :n(kl-I—Z) "'c:n(ll—l) c:n(h) ]

(2)
Using definitions (2), eq. (1) can be written in a com-
pact, linear regression form, [6],

y(n1,ns) = =Xl (n1,19)C m (3)

The LS 2-D FIR filtering is casted as follows. Given
a 2D sequence of an mput signal, x(n1,nz2), and a 2D
sequence of a desired response signal z(ny,ng), over the
rectangular data support region &, estimate optimum
coefficients of model (3), that minimize the cost function

Z Z 2(ny,n) —y(ng, ny))” (@)

n1=0 ny,=0

g NlaNZ

A prewindowing assumption has been adopted. The
normal equations resulting from the minimization of the
above cost function, are taken the form

RN, N)C (N1, No) = =D (N1, No) - (5)

where
R Nl,Nz Z ZXM niy,na XM(nlanz) (6)
n1=0n,=0
and
Ny Ny
DM(Nl,Nz) = Z Z XM(nlaRZ)Z(nlanz) (7)

n1=0 ny,=0



R (N1, Ng)and D (N1, N3) are the input signal sam-
pled autocorrelation matrix, and the sampled cross cor-
relation vector between the mput and the desired re-
sponse signal, respectively.

Any well behaved linear system solver can be applied
for the mversion of the 2-D normal equations, (5). How-
ever, the special structure of the normal equations gives
rise to the development of cost effective algorithms for
the determination of the unknown parameters. The
multichannel Levinson-Wiggins-Robinson (LWR) algo-
rithm, [1], [8] is a well known example. A major feature
these algorithms offer against the conventional counter-
parts, like Cholesky’s method, is reduction of computa-
tional complexity by an order of magnitude.

The application of the mmltichannel LWR algorith-
m for the solution of the normal equations requires
a columnwise (or a rowwise) organization of the filter
mask. In this way, spatial shift mvariance characteris-
tics can be utilized. The normal equations take a high-
ly structured near-to Toeplitz-block-Toeplitz form, [8].
The column(row)-wise approach, however, implies a se-
vere restriction to system modeling since 22D masks of
rectangular shape can only be handed.

In this paper a fast algorithm is developed for the solu-
tion of the near-to Toeplitz-block-Toeplitz normal equa-
tions in an order recursive way. Filter masks of general
shape are allowed. The prosposed algorithm extends the
algorithms proposed in [4}-[7], that deal with the Mean
Squared Error case, to the Least Squares counterpart.
Efficient recursions are developed for updating of lower
order filter parameters towards any neighboring point.
It can be efficiently applied for the order recursive esti-
mation of the 2-D Least Squares causal FIR filter and
system identification, accelerating the exhaustive search
procedures required by most of the order determination
criteria, [9][10].

2 THE PROPOSED ALGORITHM

In this section order updating recursions are develope-
d for the solution of the normal equations (5) for the
prewindowing LS 2D filtering. An order recursive algo-
rithm is proposed that serves for the transmission from
lower order parameters to imcreased order counterpart-
s. Single step increments of the filter mask M are al-
lowed each time. The method however can be applied to
the general case of noncausal support regions, and with
some extra algebraic manipulation to the more general
unwindowed LS case.

Thus, starting from M an increased order mask is
constructed with one additional neighboring sample.
Let us consider the #;-th row of the filter mask, ie.,
m(iy), 41 € [0,51]. It corresponds to p(i1) = la(iy) + 1
filter taps. The filter mask can be augmented by adding
an an extra filter coefficient at (i1, /3(é1)+1), Le., at the
11-th row.

Let M + L(i1) be the mcreased order filter mask.

Thus,
M+ L(iy) = MU{(i1, (1) + 1)} (8)

The corresponding augmented data vector (2) is parti-
tioned as

XM (77,1 s 77,2)
x(nl — il, Ng — 12(21) — 1)
)
Sr,) is a permutation matrix utilized to extract (push
down) the extra data sample z(ny — iy, ny — l(é1) — 1)
out of XM+L(i1)(n1 s 77,2).

Based on the data partition strategy for the data vec-
tors associated with the increased order filter masks,
efficient recursions are developed for updating of filter
parameters Cat — Carqr(iy)-

X amriiny(ni,n2) = Spa)

2.1 Filter order updating recursions

Consider the increased order linear system (5) corre-
sponding to the angmented mask M + L(i;). Then, it
can be partitioned using (9) as

¢ R (N1, N2) rl/]\(/:l)(Nl’NZ)]
HOO LS (N, ) P%I)(Ni’ N(ZJ)V .N)
MUV, N2
Sri)Camyriy (N1, N2) = —Sf(il) iy 16241 (N1, Na)
(10)
d(iy, la(in) + 1)(N1, N2) =
Ym0 Lo o — iy nz = ba(in) = Dz(ny, m2)
P (V1 Ny) =
im0 Yonazo Aa(ny,nz) w(ny — i, ny — l(ir) = 1)
Application of the matrix inversion lemma for parti-
tioned matrices, leads to a recursive way for the left
hand side order update of Caq(N1, No), (see Table 1).
Auxiliary parameters b'y, (N1, N2) and aj (N1, N2)
introduced in Table 1 can both be interpreted as single
step backward and forward 2-D predictors. The devel-
opment of an order recursive algorithm for the deter-
mination of the optimum filters Caqir,)(N1, N2) for
all possible angmented masks {(i1,/3(i1) + 1)} for all
i1 € [0,{1], requires recursions for updating the back-
ward predictors for all £ = 0...[;. The backward and
forward predictors are obtained by setting the desired
response signal z(ny,ng) = x(ny — £,ng — l3(¢) — 1) and
z(ny,nz) = x(n1 — €, ny), respectively. They are esti-
mated as the solutions of the normal equations

Ra(Ny, Na)bly (N1, Na) = =1/ (N1, )

11
Ra(N1, Ny — Daly, (N1, N2) = —ri) (N, V) 1)

for all £ € [0,1;]. The backward and forward antocorre-
lation vectors are defined as

N N rlj\(/f) (Nl’N2) =
D oni=0 2onamo Xam(ni, ma)r(ny — £,nz2 — B(0) — 1)
N N. I{\EIZ) (N1 ) NZ) =
om0 2omamo X (1, n2 — Dz(ny — i1, na2)



To be able to develop an order recursive algorithm for
the determination of the optimum filter Caq (N1, N3), re-
cursions for updating the single channel backward and
forward predictors are required. The derivation of re-
cursions (5)-(7) and (15)-(24) of Table 1 follows [5] and
[6]. The main difference is the space shift mtroduced at
the backward predictor, eqs. (19) and (24). Notice that

Rm(N1, No) = Rm(N1, Na — D)+
Sniio Xaa(ng, Na)X iy (n1, Na)

and

T (N1, Na) = 1 (N, Ny — 1)+
Yomizo X aalny, NaJe(ny — iy, na — ba(ir)

The extra recursions are required to compensate for the
space shift, eqs. (8)-(14) of Table 1.

2.2 Overall organization

The order recursive equations developed so far, for the
updating of the filter coefficients vector, as well as for
the auxiliary backward and forward single step predic-
tors, can be tight together to form a powerful true order
recursive 2-D algorithm. Indeed, let M be the sup-
port region where in the search for the optimum mask
will be conducted. Let l{m =max{i : ({1,42) € Mfm}.
Then, for all 41 € [0,51],l; < l{m, the increased order
filters corresponding to a single increment along a row
of Mij.e., Caqr(i,)(N1, Na) for all possible neighboring
directions {(i1,/2(¢1) + 1)} and or all ¢, € [0,/1], can be
estimated by applying the recursions of Table 1

Cm (N1, No) — Cparqrin) (N1, No)

The computational complexity of the algorithm sum-

marized m Table 1 is O((h + )M + NlM) operations
per recursion, where M = dim(C ) = Zi’llzo (I3 (i1 )+1).

Then, for a 2-D filter of a final mask shape M
O™ + 14 MM/

operations are required.

A great advantage the proposed algorithm offers a-
gainst [8], is the accommodation of masks of general
boundaries and the estimation of lower order parame-
ters. Moreover, all lower order filters that correspond
to reduced shape masks can be recovered. Consid-
er for example a filter mask of a rectangular shape,
M = (0,0)) x (0,67""). When all filters of intermedi-
ate order (0,0) x (£, () are required, for all 1 < ¢ < ¢/,

3 CONCLUSIONS

A highly efficient, order recursive algorithm for 2-D FIR
filtering and 2-D system identification has been devel-
oped. Masks with arbitrary shape can be handled. The
proposed algorithm allows for the recursive estimation

of the 2-D filter mask shape. The implicit flexibility
of the algorithm enables for a dynamical reconfigura-
tion of the mask shape in a computational efficient way.
The application of the proposed scheme to 2-D image
restoration and to 2-D spectral estimation are topics of
current research.
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Eq. The Algorithm Cost
(1) 6[/(21 (N1 , Nz) = d(ll , 12(11) =+ 1)(N1 , sz + ]t:.b(ll)t (N Nz)cM(Nl , Nz) 1
) ab@)(Ny | Np) = p(0, 0)(Ny, Ny) + 15" (Nl,Nz)b (N1, N2) M
(3) ke (N1, N2) = =BLay) (Nl,Nz)/ab(“ (N1, N2) 1
Cam(N1, N bZ1 N1, N.
(4) SrinCausrin (N1, N2) = ( Ml N 2)) + ( ( n 2))kL<m(N1,Nz) M
FOR (=0 TO I, AND (%4, DO
5) B (VL N) = plin — Lla(in) — L) (N1, Na) + £3g " (N, NaJbly (N1, V) M
©) KO (V) = 10 ><N1,Nz>/ab<“ (N1, No) 1
) Suitn Mans (N1 No) = (bZM (Nl,Nz)) N (bzl (N1,N2)) O (V1 V) M
21 i1 ; 0 1 i1 3
END FOR ¢
FOR n, = N; TO 0 DO
(8) b(ll)(Nl N2—1/n1)_x(n1,N2)—|—XM(n1,N2) bll (Nl,Nz—]./nl —1) M
(9) bl1 (Nl,Nz 1/77,1) (Nl,Nz ) ]./77,1 —1) VVM(Nl,Nz—]./nl) b(“)(Nl Nz—l/nl) M
(10) ' b(“)(Nl,Nz—1/711)'I€b(21)(N1,N2—1/711)0[./\/1—|—L(Zl)(N1,N2' 1/77,1) 1
(11) Oéb(“)(Nl,Nz—l/nl —1) IOzb(“)(Nl,Nz—1/77,1)—617(“)(]\71',]\72—1/77,1)617(“)(]\71,]\72—1/711) ].
(12) ]CM+L(Z'1)(N1,N2/711)I—6b(“)(N1,N2—1/ﬂ1)ab(ll)(N1,N2—1/77,1 —1) 1
wa (N1, Na/n bl (N1, Na/ny — 1)\ 4
(13) | Spa)yWamsri (N1, No/ny) = ( 10 2/m) + p (Vs 12 1= k/\/?+L(i1)(N1’N2/n1) M
(14) OZM—|—L(i1)(N1,N2—1/n1)IOZM(Nl,Nz—1/n1)6b(i1)(N1,N2—1/77,1)]6‘7\)/[4_[/(2»1)(]\71,]\72/711) 1
ENDFOR n,
IF (=i, DO
(15) LET A = [an (Nl,Nz)] ;
. . £=0...11 .
(16) BN, Ny) :pr(“)(Nl,N2)+434(N1,N2)rbﬂ(jl)(]vl,]v2) kM
(17) af(leNg) = RI°(Ny, Na) + R, (W1 ,sz)AM(Nl,Nz) KM
(18) KON ) :O—Q_f(Nl , NZ)BL(“)I(Nl L N3) k2
' b1
(19) TLbM+L(N1,N2) bZ/\l/l(Nl’Nz—l) + AM(Nl’NZ))[XL (Nl,Nz) kM
, _ e -
(20) LET BM+L(“)(N1,N2) = [bM+L(i1)(N1aN2)] =01, AND (i,
(21) (b/\l/l-I-L(z ())(Nl’NZ)) — SRbi\l/l+L (N1,N2) _ (B/\I/I+L(zl:;:(N1aN2)) [A(z(il)(NlaNz) kM
ENDIF
FOR £=0 TO [, DO
(22) B (N1, Na) = plin — €, 1a(i1) + 2)(N1, Na) + 134 (N1, NaJaly, (N1, Vo) M
(23) kpG) (N1, No) = =81 (N1, No)fab G (N, V) 1
4 21 _
(24:) Sz(il)af\/l_l_L(il)(Nl,Nz) — (a’,/\/l (Nl ,ONZ ) + (b,/\/l (Nl ,]-NZ 1))k£((f))(N1,N2) M
END FOR ¢
Tablel. The true order recursive algorithm for two-dimensional Least-Squares filtering.




