
DECOMPOSITION AND ORDER STATISTICS IN

FILTERING

Dinu Coltuc, Philippe Bolon

LAMII-CESALP, University of Savoie,

Av. de la Plaine, 41, P.O. BOX 806,

74016, Annecy Cedex, FRANCE

e-mail: fcoltuc, bolong@esia.univ-savoie.fr

ABSTRACT

The paper investigates a three stage �ltering scheme,

namely: 1) signal decomposition, 2) �ltering and 3) sig-

nal reconstruction. If marginal rank order �ltering is

used in step 2, the derived �ltering scheme generalizes

the classical order statistics one. Based on this idea, a

new family of nonlinear �lters, called decomposition �l-

ters, is proposed and investigated. The most interesting

feature of the new �lters is their dependency on signal

decomposition. Three decomposition procedures that

exhibit certain minimum and symmetry properties are

investigated. They are the canonical decomposition of

functions, the Jordan decomposition of bounded vari-

ation functions and the parity decomposition, respec-

tively. The properties of the derived �lters are discussed.

1 INTRODUCTION

Since the median �lter has been proposed, the class of

order statistics �lters has been developed extensively.

This paper proposes a framework which generalizes the

classical order statistic �lters. The outline of the paper

is as follows. In section 2, the basic principles and def-

initions of decomposition �lters are introduced. Based

on the formalism of section 2, three classes of �lters

are proposed in section 3, 4 and 5. They are: canon-

ical decomposition �lters, Jordan decomposition �lters

and parity decomposition �lters. Finally, conclusions

are drawn in section 6.

2 DECOMPOSITION FILTERS

Let F be a set of functions de�ned on a �nite domain

D � Sp ranging in a bounded interval M � S, where
S stands either for R or for Z; f 2 F if f : D ! M .

The set F is meant to represent signals: real signals

when S stands for R, discrete ones when S stands for

Z; 1D signals for p = 1 and 2D signals for p = 2. For

the moment, we consider f to be measurable functions.

According to the particular signals to deal with, some

other constraints can be imposed on f , e.g., bounded
variation functions, class Lk functions, etc.

Let m be a �xed integer and let D be an operator that

maps F into Fm:

D(f) = (f1; f2; : : : ; fm) (1)

where f i : D !M for i = 1; 2; : : : ;m and

f =

mX

i=1

f i (2)

The operator D can be thought as:

D = (D1;D2; : : : ;Dm) (3)

where

Di(f) = f i; i = 1; : : : ;m (4)

The operatorD provides a decomposition of a signal f
in a sum of exactly m components. The decomposition

is a representation of f as an ordered set of components.

The ordering should be understood as strictly referring

to the position of the components within the m-tuple.

No other ordering on the components is assumed so far.

With the above notations the new �lters are de�ned

as follows:

De�nition 1 Given an operator D and a set of m
ranks, (r1; r2; : : : ; rm), the output DF (f) of the decom-

position �lter of a signal f for a window w is

DF (f) =

mX

i=1

f i(ri) (5)

where f i
(ri)

is the ri-th order statistic of f i within the

�lter window w.

In other words, the new scheme of �ltering takes the

representation of the signal f provided by using the

operator D, it executes marginal rank order �ltering

(with m �xed ranks) within the �lter window w, and
�nally, it delivers the output as the sum of the �ltered

components. If the size of the �lter window is n, for
each component, the ordering within the �lter window

is performed on n samples. The ranks ri should obey

1 � ri � n for i = 1; : : : ;m.



While rank order �lters can be de�ned for only n
ranks, where n is the size of the window �lter, the new

scheme increases the range up to nm. Furthermore,

a fundamental observation should be made: while the

rank order �lters are completely speci�ed by the consid-

ered rank and the �lter window, the new scheme intro-

duces the dependence on the operator D that becomes

crucial for the behavior of the �lter. Thus, much care

should be taken in the selection of D. First of all, it

is desirable to yield �lters with interesting properties

for signal processing, namely good noise suppression or

an ability to emphasize some features like edges, etc.

The operator D should be well-de�ned, i.e., to yield an

unique representation of the signal. For computational

complexity reasons, D should be as simple as possible

andm should have moderate values. Condition (??) has

been explicitly enforced in the de�nition of D in order

to reduce the computational complexity of the imple-

mentation of the new �lters.

A rather trivial example for D (m = 2), is when D1

is the identity operator on F , D1(f) = f , and D2 is the

null operator on F , D2(f) = 0. The representation of

f by using this very simple operator is (f; 0). It is easy
to see that, in this case, De�nition 1 recovers the clas-

sical rank order �lters. Since decomposition �lters are

strongly dependent on the decomposition, we look for

operators that have some properties that are expected

to generate interesting �lters. Thus, we investigate oper-

ators that obey some minimum or symmetry properties.

They yield representations with m � 3 components.

2.1 L-Decomposition Filters

An extension of decomposition �lters can be easily de-

�ned by following the approach of L-�lters, which are

linear combinations of order statistics [?]:

yi =

nX

j=1

ajx(j) (6)

The well-known moving average, median, r-th rank or-

der, �-trimmed mean and midpoint �lters are special

cases of L-�lters when appropriate sets of coe�cients

aj ; j = 1; : : : ; n are used. The ability of the L-�lter to

have optimal coe�cients for a variety of input distribu-

tions makes it suitable for a large number of applica-

tions.

The L-decomposition �lters de�nition is as follows:

De�nition 2 Given a decomposition operator D, and

an array of m� n coe�cients, A = [ai;j ], i = 1; : : : ;m,

j = 1; : : : ; n, the output LD of the L-decomposition �lter

of a signal f for a window w is

LD =

mX

i=1

nX

j=1

ai;jf
i

(j) (7)

where f i
(r)

is the r-th order statistic of f i within the �lter

window w.

L-decomposition �lter computes marginal L-�ltering

on the components of the decomposition and delivers

their sum as the output of the �lter. For a window

�lter of size n and a decomposition in m components,

m � n coe�cients are needed. This suggests that L-

decomposition �lters are more di�cult to be analyzed

than the classical L-�lters. A simpli�ed de�nition of L-

decomposition �lters can be given by considering, for

each component, only one non-zero coe�cient.

De�nition 3 Given an operator D, a set of m
ranks, (r1; r2; : : : ; rm) and a set of m coe�cients,

(a1; a2; : : : ; am), the output LD of the L-decomposition

�lter of a signal f is

LD =

mX

i=1

aif
i

(ri)
(8)

where f i
(ri)

is the ri-th order statistic of f i within the

�lter window w.

Equations (??) and (??) look very similar. However,

it should be noted that (??) is a linear combination of

the ordered samples within the window �lter, while (??)

is a linear combination of marginal rank order statistics.

Thus, each rank ri is computed for its corresponding co-

e�cient f i within the �lter window and only one sample

for each component contributes to the output of the �l-

ter. The contribution of the components in equation

(??) can be very di�erent and thus, the selection of the

weights ai can be used to scale the output, emphasize

the e�ect of some components, design adaptive �lters,

etc.

3 CANONICAL FILTERS

The canonical decomposition of a function f is

f = f+ � f� (9)

where

f+ = maxff; 0g; f� = �minff; 0g (10)

f+ and f� are called the positive and negative parts

of f . They are positively de�ned and measurable func-

tions. Equation (??) gives a standard representation

of f as a di�erence of two non-negative functions. A

certain minimum property of the representation exists,

since given two functions g and h such that f = g � h
and g; h � 0, then f+ � g and f� � h.
Let T be a suitable value within the range of the signal

f and let us consider the operator CD de�ned as follows:

CD = (CD1; CD2; CD3) (11)

where

CD1(f) = f1 = maxff � T; 0g (12)

CD2(f) = f2 = minff � T; 0g (13)



Figure 1: Noisy image.

CD3(f) = f3 = T (14)

By using the operator CD de�ned above, we have:

f = f1 + f2 + f3 (15)

When T = 0, (??) is merely the canonical decompo-

sition of the signal f , with the minor di�erence that

f2 = �f�. Equation (??) can be seen as the approxi-

mation of the original signal f by a constant signal T .
The approximation error is split in two components: f1

the positive error and f2 the negative one. Convenient
selections for T are: the arithmetic mean of f , the me-

dian of f , etc.

According to De�nition 1, the output of the canonical

decomposition �lter is:

CDr1;r2
f = f1(r1) + f2(r2) + f3 (16)

Canonical decomposition �lters are closely related to

rank order �lters. Their output range is bounded by the

classical max and min �lters within the same window.

Since r1 and r2 range in [1; : : : ; n], equation (??) al-

lows n2 combinations of the ranks. Not all the combi-

nations yield distinct outputs; at most n2=4 ones. We

mention two aspects regarding ranks selection: 1) when

ranks are equal, r1 = r2 = r, 1 � r � n, the canonical
decomposition �lters become the r-th rank order statis-

tic �lters; 2) r1 = r and r2 = n� r, the output variance
of the derived canonical �lters is smaller than the out-

put variance of the classical rank order �lters (the �lter

has the tendency of approximating T ).

In smoothing, the smaller the variance, the better the

�lter performance is. Thus, the most appropriate se-

lection of ranks is as in case 2. An example of image

�ltering, for a 5� 5 window and with r1 = 12 r2 = 14,

is shown in Fig. 2. The noisy girl image shown in Fig.

1 was heavily corrupted with a mixture of Gaussian and

impulsive noise.

Figure 2: Filtered image.

4 JORDAN FILTERS

Jordan decomposition theorem asserts that any

bounded variation 1D function can be decomposed in a

di�erence of two non-decreasing functions [?]. By con-

sidering a decomposition operator

JD(f) = (f1; f2) (17)

where f1 and �f2 obey Jordan decomposition of f , the
de�nition of Jordan decomposition �lters is:

JDr1;r2
f = f1(r1) + f2(r2) (18)

Jordan decomposition �lters (1D and 2D) have been

introduced in [?, ?] for the case of Jordan max and min

�lters, namely for the case r1 = n r2 = 1 and r1 = 1

r2 = n, respectively. Jordan max and min �lters bound

the classical max/min �lters; their output increases (de-

creases, respectively) with n. Opposite to max/min �l-

ters, they do not smooth the signal; by the contrary,

they are well-suited to emphasize signal variation. Jor-

dan �lters have been used in low level image processing

tasks [?], and recently, Jordan features have been de-

rived for texture segmentation [?].

The general de�nition of Jordan �lters given here in-

creases their 
exibility and preserves their attractive

computational features, namely low computational com-

plexity, constant number of operations per sample re-

gardless the window size and decreasing computational

cost with respect to the number of �ltering steps in mul-

tiple �ltering applications.

5 PARITY FILTERS

The decomposition operator is locally de�ned for sym-

metric windows as PD(f) = (f1; f2), where

f1(x) =
f(x)� f(�x)

2
; f2(x) =

f(x) + f(�x)

2
(19)



Figure 3: Original image.

The �lter output is:

PDr1;r2
f = f1(r1) + f2(r2) (20)

f1 is odd and f2 is even with respect to the center of the

window �lter. The odd and even parity components cap-

ture information on the local shape of the signal: thus,

symmetrical signals within the �lter window generate

null odd components, and anti-symmetrical signals gen-

erate null even components, respectively. Several possi-

ble selections of the ranks follow: 1) When r1 is close

to the median and r2 is close to the minimum or max-

imum, the corresponding �lter is expected to enhance

the signal. Its output is the superposition of the max-

imum variation on a local mean of the signal. Such an

example is given in Fig. 4 by using a �lter on a 3 � 3

window with r1 = 5 and r2 = 9. As it can be seen,

the �ltered image is biased to white. 2) When r2 is the
median, f2 does not in
uence the �lter. If r1 is close to
the median, the �lter smoothes the signal. If r1 is close
to 1 or n, the �lter behavior is similar to the one of max

or min �lters. The case when r2 is the median reminds

the Wilcoxon �lter.

Some more 
exibility exhibits L-parity �lters. The

selection of the �lter coe�cients controls the e�ect of f2

and f1. For instance, a small value of a1 and a large

value for a2 reduces the local mean of the signal and

accentuates the variation of the signal within the �lter

window.

6 CONCLUSIONS

A theoretical framework for the de�nition of new classes

of nonlinear �lters, called decomposition �lters, was de-

veloped. The proposed scheme consists of the decom-

position of the signal in a sum of components, marginal

rank order �ltering on the components followed by signal

reconstruction. The scheme generalizes classical rank

order �lters; rank order �lters are retrieved for particu-

lar decompositions as well as for certain rank selections.

Figure 4: Filtered image.

The combinations of the ranks for marginal rank or-

der �ltering of the components yield up to nm possible

�lters (n is the size of the �lter window). The decompo-

sition operator is essential for the behavior of the �lters.

Three decomposition operators are investigated. They

are based on the canonical decomposition of functions,

the odd-even decomposition and the Jordan decomposi-

tion of bounded variation functions. The derived �lters

are discussed and applications in image smoothing and

enhancement are investigated. The paper is mainly an

introductory one. The proposed examples are far from

exhausting the topic. Further researches are in progress.
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