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ABSTRACT

This paper presents a new discrete theory of median shifts.
It relates the theory to the older continuum model, predicts
angular variations, and also gives an accurate figure for the
active area of any discrete neighbourhood, thereby making
the continuum model more accurate.  The work shows that
at low curvature values a quadratic law applies, this being
followed by the previously known linear variation.  It also
explains why the observed linear behaviour is significantly
larger than indicated by the continuum model.  Overall,
there is now very good agreement between the new discrete
theory, the continuum model and the observed results.

1 INTRODUCTION

Median filters are well known for their ability to suppress
noise in digital images without producing the blurring
characteristic of mean and Gaussian filters.  It has also been
known for some time that median filters produce shifts of
curved object boundaries and intensity contours [1, 2].  The
actual shifts produced by such filters have been modelled
using a continuum approximation and give rise to a simple
formula for the shifts, namely:

D ≈ 
1
6 κa2 (1)

where  κ  is the curvature of any relevant intensity contour,
and  a  is the radius of the neighbourhood, assumed to be
nearly circular.  While the agreement between experiment
and theory provided by this model was not exact, it led to
approximately the right variations, and the numerical
values depended on a separate assessment of the effective
size of the neighbourhood [1].  Semi-empirical estimates
were used to obtain agreement between experiment and
theory.  However, the situation was not completely
satisfactory, as absolute numerical agreement was not
obtained by this approach, and with an operator as
apparently simple as a median filter it should in principle
be possible to obtain exact absolute agreement.

This is quite important as it has recently been shown that
mean and mode filters also suffer from this phenomenon,
so it is not a peculiarity of the median filter [3, 4].  Hence
it is definitely of interest to see whether exact numerical
agreement between experiment and theory can be attained in
the median case, and also to see whether the relation

between an exact theory and that offered by a continuum
model can provide a rigorous measure of the effective size
of the neighbourhood.  It is also of interest to see the
extent to which the non-circular neighbourhood shape
arising from a discrete lattice of pixels affects the theory.
These two factors are also important because relatively
little work has been done to relate discrete to continuum
concepts in the whole of image analysis, an important
exception being the work of Kulpa and others on analogue
boundary length estimation on a discrete lattice [5–7].

In the following section we determine accurate median
shifts for 3 × 3 neighbourhoods.  In Section 3 we extend
this work by means of simulations, and obtain results for
5 × 5 neighbourhoods.  In Section 4 we study the theory in
more detail, and show how various intensity patterns affect
the median shifts.  Section 5 summarises the work and
gives further insights into the operation of noise
suppression filters.

2 BASIC THEORY OF MEDIAN SHIFTS IN
3 × 3 NEIGHBOURHOODS

In this section we assume that the tessellation is square and
that each neighbourhood consists of an n × n array of
pixels.  We shall take each pixel intensity value to be a
sample positioned at the centre of the pixel and obtained by
averaging the intensities over the whole pixel, though we
shall temporarily assume that the value is equal to the
intensity at the pixel centre.  We consider the case of a
3 × 3 neighbourhood, and assume that the underlying
analogue intensity variation has contours of curvature κ and
radius of curvature b, where b = 1/κ, as shown in Figure 1.
First, it is clear that zero shift occurs for κ = 0.  However,
if a circular median intensity contour passes close to the
centre of the neighbourhood with an orientation θ to the
positive x-axis, we can identify several possibilities: (1) the
median contour will or will not pass through the centre of
the central pixel in the neighbourhood; (2) the median
contour will pass through one or more than one pixel
centre.  Note that for most orientations θ the median
contour will pass through only one pixel centre, which we
shall call the median pixel centre.  In any case the returned
value of the median filter will be the intensity of the
median pixel, and in the discrete case this may either be the
central pixel or some other pixel.



The precise geometrical configuration is shown in
Figure 2.  In particular, O is the centre (0, 0) of the
neighbourhood, and C is the centre (xc, yc) of the circle,
which passes through the median pixel position (p, q).  We
now need to calculate the distance of the circle from O: this
is the median shift Dθ.  As the circle passes through (p, q):

(p – xc)2 + (q – yc)2 = b2 (2)

Substituting for yc and solving for xc gives:

xc = cos2θ{(p + q tan θ)

± [(p + q tan θ)2 – (p2 + q2 – b2)sec2θ]1/2} (3)

where the '+' sign gives the appropriate solution.  We can
now find the nearest point S (xs, ys) on the circle to O, and
this leads to a median shift:

Dθ = – xs sec θ = b – xc sec θ (4)

Equations 3 and 4 now lead to the correct value for the
median shift Dθ.  Starting at κ  = 0,  the median will
always be the centre pixel (0, 0), so Dθ will be zero for
all θ.  For a minute increase in κ, and assuming a very low
value of θ, we see that the centre pixel can no longer be the
median value, which will hence divert to (0, 1) as in
Figure 3.  This leads eventually to:

Dθ = b – sin θ – (b2 – cos2θ)1/2 (5)

For large b we find:

Dθ ≈ – sin θ + 
1
2b

 cos2θ = – sin θ + 
1
2 κ cos2θ (6)

Similar arguments for much larger angles lead to the
angular variations shown in Figure 4.  Clearly, these do
not match what might have been expected from equation 1.
A way forward is to find the mean value of Dθ as θ varies
over the whole range 0 ≤ θ ≤ π/4.  This leads to the
following approximate result for low values of κ:

D ≈ (1 + 2√2
2π ) κ2 ≈ 0.61 κ2 (7)

It will be seen from Figure 5 that this approximation is
good up to κ ≈ 0.3, and thereafter somewhat underestimates
the variation in D, relative to values obtained from a full
numerical computation.  What is more interesting is the
reason for the square-law variation.  Examining Figure 4
more closely shows that the θ-variations are approximately
piecewise linear functions of κ : in addition, they move
laterally in a close to linear manner with variation in κ .
As a result, integrating with respect to θ and averaging over
this variable must yield an approximate square-law
variation in κ.  The limits to this variation occur when the
3-element piecewise linear approximation breaks down, and
the θ-map as a whole starts increasing almost linearly with
κ  (this happens for κ  ≈ 0.63).  However, the resulting
small linear variation is insufficient in the case of a 3 × 3
neighbourhood to win over the still strong square-law
variation – though, as we shall see below, the same is not
true in the case of a 5 × 5 neighbourhood.

Next, it turns out that the situation is more complex for
high values of κ .  For example, when the orientation is
sufficiently high, (0, –1) takes over from (1, –1) as the

pixel giving the median value, while (0, 0) simultaneously
drops out (Figure 3).  Although other pixels might have
been expected to be relevant, they correspond to curvatures
so high that solutions do not exist for all θ.  This means
that the shift will be indefinable, since the small size of the
circle will not encompass sufficient pixel centres in some
orientations, and it will be ignored: i.e. the circular object
will be eliminated by the median filter.  Here we ignore
such situations, and concentrate instead on determining
mean values of D where Dθ is definable for all θ.

Overall, the important point it that it is possible to
understand in detail the situation for a 3 × 3 neighbour-
hood.  Unfortunately, the situation gets increasingly
complex as more and more pixels come into play for larger
neighbourhoods.  Hence simulations will be seen to be
important, as shown in the following section.

3 SIMULATIONS TO ESTIMATE MEDIAN
SHIFTS IN 5 × 5 NEIGHBOURHOODS

An attempt was made to calculate median shifts in 5 × 5
neighbourhoods by the methods of the previous section.
As a start, it is clear that for low κ  and low θ the median
pixel is (0, –1).  Interestingly, this is below the centre
pixel rather than above it (as happens with 3 ×  3
neighbourhoods), and as a result Dθ increases at first rather
than decreasing with increase in θ.  For low κ , it is also
clear that the next median pixel is (0, 2).  However, the
situation rapidly becomes complicated as θ increases
further: accordingly, a simulation was carried out using the
same concepts, to find the median shift for all κ and θ and
its average values over all θ (Figures 6 and 7).

It will be apparent there is a gradual changeover from a
square law to a linear law as κ increases (Figure 7).  Again,
it is clear that the square-law variation is due to the
approximately linear forms of the Dθ variations, which,
when averaged over θ, give a κ 2 characteristic.  This
changeover from a square law to a linear variation would be
expected to become increasingly evident for larger
neighbourhoods.  Indeed, for larger neighbourhoods the
range of the square-law variation will be reduced, and the
most apparent variation will be the linear one.  None of
these factors was obvious from the older continuum model
which merely predicted a simple linear variation.

4 SIMULATIONS WITH SUB-PIXEL
INTENSITY VARIATIONS

While the previous simulations and theory related directly
to binary and saturated grey-scale images, slight alteration
of the methodology is required before normal grey-scale
images can be coped with.  In fact, the simplest approach is
a direct simulation in which all sub-pixels are assigned
appropriate grey-level values; next, these are averaged over
each pixel; then the median intensity is determined, and the
median shift is computed from the median contour
position.  To achieve this, the intensity patterns have to be
decided in advance.  Here we adopt the model of [1], and
assume that there is a steady intensity gradient along a
specific axis, with variations away from this axis being
determined by contours of constant curvature, as indicated
in Figure 1.



We carried out such a simulation, with 11 × 11 sub-
pixels per pixel, this being found adequate for the task.
The result of this work showed that for 3 ×  3
neighbourhoods, the estimate given by the upper solid
curve in Figure 5 is slightly low, by an amount which
varies with the precise intensity pattern assumed, and in
particular with the possible variation of κ  on progressing
from one intensity contour to another.  In fact, this effect
seemed to account for about half the discrepancy between
the experimental and theoretical curves shown in Figure 5,
the remaining differences probably being due to
peculiarities of the data in [1].  Nevertheless, it appears that
the experimental shifts reported in [1] could now reasonably
be explained if the precise intensity patterns in the original
image data were known.

It is of interest to compare the results obtained so far
with those of the continuum model leading to equation 1.
The theory presented above makes it clear that for a circular
neighbourhood  a  should be interpreted as the mean
distance from the centre to the centres of the outermost
pixels.  For a small square neighbourhood it seems
reasonable to approximate by taking  a  as the mean
distance to the square through the centres of the outermost
pixels, which gives a ≈ 1.12a0, a0 being the closest
distance from the centre to the square.  For a 5 × 5
neighbourhood, this leads to a shift 1/6κ × 2.242 which
gives values ~35% lower than the linear variation predicted
on the discrete model.  However, for a 3 × 3 neighbour-
hood, we get a shift 1/6κ  × 1.122 which gives values a
factor ~3 lower than any possible linear variation that
might be deduced on the discrete model.  Clearly some
explanation is needed of why the continuum model predicts
these low values – especially in the latter case.  In fact, it
seems that the pixels in the 3 × 3 neighbourhood might
well act as a thin ring of pixels, with the result that the
linear variation will be closer to 1/2κa2 than to 1/6κa2,
thereby fully accounting for the discrepancy.  The effect
would be expected to be smaller for a 5 × 5 neighbourhood,
and would revert to normal for a continuum situation.  This
seems about as far as we can go to explain the small
neighbourhood results on the continuum model.

Finally, we consider the results of the earlier experiments
[1].  Their main relevance here is the total incapability of
the earlier continuum model to explain in detail the very
low values of shift observed in these data for low values
of κ .  However, this problem has now been entirely
overcome, in that the linear variation is preceded by the
hitherto unsuspected quadratic variation at low κ .  Thus
these experimental results are now largely explained, any
remaining discrepancies being due to peculiarities of the
data which have already been considered in [1].

5 CONCLUDING REMARKS

This paper has studied the shifts produced by median filters.
The total incapability of the earlier continuum model to
explain in detail the very low values of shift observed at
low values of κ has been overcome by the use of accurate
discrete models.  In particular, it has been shown that the
linear variation is preceded by a hitherto unsuspected
quadratic variation at low values of κ .  One odd
circumstance is the fact that the predictions of the earlier

continuum model are so small at high values of κ, but this
has also been explained.

The derivation of the discrete models in this paper shows
that the size of the neighbourhood to be assumed on the
earlier continuum theory is not the apparent area of the
neighbourhood, but the area bounded by the sampling
points at the centres of the pixels.  While the continuum
theory would not be expected to give accurate results for
small neighbourhoods, it should do so for large
neighbourhoods if this factor is taken properly into
account.

Overall, this paper has been able to relate the discrete and
continuum theories of median shift and to use them to
explain all observed results.  There is no doubt that shifts
are an important feature of median filters: interestingly they
cannot be avoided merely by using simple alternative
measures such as mean or mode filters.
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Figure 1 Idealised geometry for continuum model.
Contours of constant intensity in an idealised circular
neighbourhood on the continuum model.
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Figure 2 Geometry for calculation of median shifts in
discrete model.  The circular median contour passes though
the pixel P at (p, q), and passes within a distance Dθ of the
centre pixel at O, leading to a shift Dθ at angle θ.
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Figure 4 Angular variation of median shifts for 3 × 3
neighbourhood.  The graphs show the variations in steps of
0.1 from κ  = 0.1 (lowest) to κ  = 0.7 (highest).  Note that
the lowest graphs are in three parts, the θ-axis constituting
the middle part of the variation.
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Figure 6 Angular variation of median shifts for 5 × 5
neighbourhood.  The graphs show the variations in steps of
0.05 from κ  = 0.05 (lowest) to κ  = 0.35 (highest).  Note
that the lowest graphs are in five parts, the θ-axis
constituting the other two parts of the variation.
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Figure 3 Phases in calculation of median shifts for 3 × 3
neighbourhood.  The position of the median contour is
shown in (a) for low κ  and low θ, in (b) for low κ  and
moderate θ, in (c) for low κ and high θ, and in (d) for high
κ and high θ.
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Figure 5 Comparisons of median shifts for 3 ×  3
neighbourhood.  The upper solid curve corresponds to the
angular variations of Figure 4.  The lower solid curve
shows the approximate square-law model of equation 7.
The dotted curve depicts the experimental data from [1].
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Figure 7 Comparisons of median shifts for 5 ×  5
neighbourhood.  The solid curve corresponds to the angular
variations of Figure 6.  The dotted curve depicts the
experimental data from [1].


