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ABSTRACT

With Laser-Doppler Anemometry (LDA) the velocity of
gases and liquids is measured without disturbing the flow.
The velocity signal is sampled at irregular intervals; a regu-
larly resampled signal is extracted using Nearest Neighbor
Resampling or Linear Interpolation. From the resampled
data the spectrum is estimated using AR-MA time series
modeling. AR-MA modeling yields a more accurate descrip-
tion of the spectral structure than the best Windowed Perio-
dogram. The accuracy of the spectral description is estab-
lished with an objective measure: the model error at time
scale T.

1. INTRODUCTION

Laser-Doppler Anemometry (LDA) is used to measure the
velocity of gases and liquids with observations irregularly
spaced in time. The interval between observations can de-
pend on the current value of the velocity [1], which gives
rise to bias problems. Those irregular intervals and bias
problems are challenges for modern statistical signal proc-
essing.

Variance considerations give a preference for equidistant
processing algorithms. A regularly sampled signal can be
extracted using resampling, for which three methods will be
compared: linear interpolation, zero order hold and nearest
neighbor resampling. Resampling will be compared to slot-
ting, which provides a regularly spaced estimate of the auto-
covariance function [2].

The power spectrum of the velocity signal is estimated
using time series modeling. The application of time series
models to irregularly sampled signals has been studied be-
fore [3]. In this paper, the time series model is estimated
using the AR-MA algorithm [4]. With the AR-MA algo-
rithm, a single time series model is selected using only the
measured data. The power spectrum is calculated from the
parameters of the selected model. This estimate is an alter-
native to the windowed periodogram.

The performance of resampling and AR-MA-modeling is
evaluated in simulations with a new quality criterion: the
model error at time scale T. This is a useful statistical meas-
ure for resampled signals.

2.  DIRECT METHODS OR RESAMPLING

The techniques that have been proposed for estimating LDA-
spectra can be divided into two classes [5]: direct methods
and resampling.

Every couple of LDA observations provides an estimate of
the autocovariance function at one specific lag time equal to
the time between the two observations. The direct methods
are based on these estimates of the autocovariance function.
The direct transform [6] is a Fourier transform of all indi-
vidual estimates of the autocovariance function which are
found in the manner described above. When this method is
applied to regularly sampled data it is similar to the periodo-
gram estimate of the spectrum. The variance of the periodo-
gram is equal to the square of the true spectrum [7]. The di-
rect transform includes this variance, but on top of that it has
a constant contribution to the variance [6]. This means that,
in areas of the spectrum with low power, the standard devia-
tion of the spectral estimate is much larger than the expecta-
tion of the spectrum. This explains statistically why negative
values can be found as estimates for the spectral density.
Therefore, the direct transform is incapable of accurately es-
timating the spectrum in areas with low power.

The slotting technique is based on the direct transform. In
order to get a more accurate estimate of the autocovariance
function, the estimates in the interval [(k-1/2)∆, (k+1/2)∆]
around lag time k∆ are averaged. This is an improvement
over the direct transform. All direct methods have in com-
mon that the estimate for the spectrum can take on negative
values. This estimate is no power spectrum because power
spectra are positive by definition. In order to allow some
kind of comparison we took the absolute value of the spec-
trum estimated with slotting to obtain the power spectra
shown in Fig.1. Slotting, like the direct transform, is incapa-
ble of accurately estimating the spectrum in areas with low
power. Fig.1 shows that the level of the slotting spectrum is
about the same for both examples in the whole frequency
range, whereas the true spectrum and the spectra of resam-
pled signals give a significant difference at higher frequen-
cies.

The second class of methods for estimating LDA-spectra
are resampling methods. With these methods an equidis-
tantly sampled representation of the signal is constructed at
the resampling times. For a statistical interpretation, the
maximum resampling rate should not be higher than the av-
erage irregular sampling rate. Otherwise the number of re-
sampled observations exceeds the available degrees of free-
dom. The spectrum estimated after resampling has a much
smaller variance than the spectrum obtained with direct
methods. Also, the estimated spectrum has a positive value
under all conditions. Therefore, signal reconstruction is



preferred over direct methods. With signal reconstruction
and resampling the estimate is not affected by velocity bias
when the sampling rate is high enough.

Interpolation schemes for LDA Signal Reconstruction or
Resampling have been studied extensively. It has been found
that complicated interpolation algorithms may give good re-
constructions in some examples but no scheme offered ad-
vantages over simple techniques in a comparison [5]. Re-
sampling can take place by substituting the original observa-
tions, that are irregularly spaced in time, in three different
ways at the resampling times nTR:
• Linear Interpolation,  LI

a linear interpolation of the observation xB at tB before
t = nTR and the observation xA at tA after nTR.
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• Zero Order Hold,  ZOH
the previous observation xB

• Nearest Neighbor Resampling,  NNR
the nearest neighbor observation

Theory has a preference for NNR above ZOH because the
expected value of the longest sequence of the same observa-
tion in the resampled signal is shorter. Precise theoretical
results for irregular observations are difficult to obtain, also
for LI. When using linear interpolation a new sample of the
signal consists of a weighted average of two LDA observa-
tions. It is easily shown that, even for interpolation of a
regularly sampled signal, the variance of the resampled sig-
nal is not equal to the variance of the original velocity sig-
nal. Also, the correlation structure of the resampled signal is
different from the correlation structure of the velocity signal.
With Zero Order Hold or Nearest Neighbor Resampling an
unbiased estimate of the variance is obtained. Also, the cor-
relation structure of the data may be conserved better, be-
cause a resampled data point is derived from only one ir-
regular sample. The three methods will be compared in
simulations. The quality of resampling will be evaluated ex-
clusively on the discrete resampling moments and not on the
interpolated continuous signal that might also be obtained
with the three resampling schemes.

3.  SPECTRAL ESTIMATION WITH AR-MA TIME
SERIES MODELING

Time series models have three different types, autoregressive
or AR, moving average or MA and combined ARMA. An
ARMA(P,Q) process can be written as [7]
x a x a x b bn n P n P n n Q n Q+ + + = + + +− − − −1 1 1 1... ...ε ε ε , (3)

where εn is a purely random process, so a sequence of inde-
pendent identically distributed stochastic variables. This
process is AR for Q=0 and MA for P=0. Any stationary sto-
chastic process with a continuous spectral density can be
written as an unique AR(∞) or MA(∞) process [7]. An esti-
mated ARMA(p,q) model is given by

x a x a x b bn n p n p n n q n q+ + + = + + +− − − −$ ... $ $ ... $
1 1 1 1ε ε ε . (4)

The normalized spectral density of this model is given by:
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where γ is a factor normalizing the total power to 1. The goal
of AR-MA modeling is to find the time series which gives
the best description of the data at hand without using prior
knowledge about the true process. This means that not only
the model parameters have to be estimated but also the
model type(AR, MA or ARMA(p,p-1)) and model order have
to be selected.

When the search for the most accurate model is restricted
to AR models the best AR order can be found using order
selection [8]. In a similar fashion the best MA and
ARMA(p,p-1) model is selected. From these three models
the single model is selected using a procedure similar to or-
der selection. It is known that using only one model type
cannot under all circumstances provide an accurate model of
the data. Only by comparing the three model types AR, MA
and ARMA an accurate description of the data can be found
under all circumstances. For a more detailed discussion of
AR-MA modeling the reader is referred to the accompanying

Fig.1 Normalized spectrum estimated with slotting and with NN
resampling from a simulated AR(1) process (a) and an AR(1)
process with an additional high frequency contribution (b).
The level of the slotting spectrum is about the same for both
examples in the whole frequency range, whereas the true
spectrum and the spectra of resampled signals give a signifi-
cant difference at higher frequencies.



paper at this conference by Broersen [4]. The order selection
criterion which are used in the AR-MA algorithm take into
account the behavior of estimation methods in short samples
[9]. This makes it particularly useful for situations where
only a short data record is available.

The method of spectral estimation used to be windowed
periodograms of tapered data [7]. However, on regularly
sampled data AR-MA modeling performs better than win-
dowed periodograms, even when the optimal window size is
chosen [4]. Therefore AR-MA modeling is used to estimate
the spectrum from the resampled data.

4.  SIMULATIONS

To determine the performance of a spectral estimator the es-
timated spectrum must be compared to the true spectrum. In
simulations the true spectrum is known, so they can be used
to test the various spectral estimators. The true velocity sig-
nal x in the simulations is a slowly varying AR(1) process v
with an additional high frequency component w: x v w= + .
v avn n n= +−1 ε (6)

with a = e-1/4000 and w is represented by a purely random
process with variance σw

2 = rσv
2. By a suitable choice of σε

2

it is realized that σx
2 equals 1 in all simulations. This signal

is similar to the practical data which are analyzed in chapter
6. Of this true velocity signal M = 100 000 equidistant ob-
servations are generated. Afterwards, this signal is sampled
at irregularly spaced intervals with mean sampling distance
10. In the sampling scheme a dependency between the inter-
val between samples and the current value of the velocity can
be incorporated. P[S|x] describes the probability a sample S
is taken, for a given value of the velocity x: P[S|x] = α|x|.

The quality of an estimate is expressed using the model
error ME [10]. The model error is a scaled version of the
prediction error PE that can be interpreted as the fit of a
model to new data of a known correlation or spectral struc-
ture:
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where N is the number of observations that has been used for
estimation. The one step ahead prediction error PE is a
measure for how well xn can be predicted using all previous
observations xn-1, xn-2… and the estimated correlation struc-
ture. The prediction error includes the additional error
caused by estimating the mean. This contribution can be-
come quite significant when the estimate of the mean is bi-
ased. The minimal value of the prediction error σε

2 is sub-
tracted which means that the model error is zero when the
estimated mean equals the true mean and the estimated cor-
relation function equals the true correlation function.

The model error defined by equation (7) is a measure for
discrete time models at the usual time scale 1, a time index
without dimension. To apply a simular measure to LDA, two
changes are required: a time t with dimension has to be in-
troduced and it must be possible for the experimentator to
choose the time scale T at which the model quality is deter-
mined. A usual choice for T is given by the resampling time
∆T. A proposal for such error measure is the model error at
time scale T, MET. MET is based on the prediction error at
time scale T, denoted PET. PET is a measure for how well an
observation x(t) can be predicted using the previous obser-
vations at lag times kT: x(t-T), x(t-2T), … and the estimated
correlation structure. The model error at time scale T is re-
lated to PET in the same way the original model error is re-
lated to PE:
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where σε’
2 is the minimal value of PET. It can be proved the

model error at time scale T is zero when the estimated mean
equals the true mean and the estimated correlation function
equals the true correlation function at all times kT. As the
correlation function at these times is left unchanged, the cor-
responding spectrum is the aliased spectrum. This correla-
tion structure is used in the definition because it is supposed
to be the correlation with optimal predictive properties.
When the LDA-signal is resampled, T must be an integer
multiple of the resampling time ∆T.

Using MET the AR-MA spectral estimate is compared to
several windowed periodograms for the AR(1) signal with an
additional high frequency content r = 0.05 and P[S|x] is a
constant independent of x. The spectrum was estimated after
NNR with resampling time 30. A Parzen window has been
used to estimate the Windowed Periodogram; the length of
the window is βM. The model error at time scale 60, ME60,
averaged over 100 simulation runs is given in Table 1. The
AR-MA spectrum is more accurate than the best windowed
periodogram. So far, no example has been found where this
result does not hold. In Fig.2 the spectral estimate of the
automatically selected AR-MA model is compared to the best
windowed periodogram (window size 0.1M) for a typical
simulation run.

Linear Interpolation (LI), Nearest Neighbor Resampling
(NNR) and Zero Order Hold (ZOH) are compared in simu-
lations of the AR(1) signal with increasing high frequency
content r. From the resampled data  the spectrum is  esti-

Fig.2 The spectrum of the automatically selected AR-MA model
and the best Windowed Periodogram compared to the true
spectrum for r=0.05; NN resampling has been used.



mated

.  AR-MA Windowed Periodogram
0.03M 0.05M  0.1M 0.15M 0.25M

7 180 80 70 90 150

Table 1The model error ME60 averaged over 100 simulation runs of
a signal with r=0.05 and P[S|x] a constant independent of x
for the selected AR-MA model and windowed periodo-
grams with several window sizes βM. The AR-MA model
is more accurate than the best windowed periodogram.

    Table 2: The model error ME60 averaged over 100 simulation runs
for Linear Interpolation(LI), Zero Order Hold(ZOH) and
Nearest Neighbor Resampling(NNR) for increasing
power at high frequencies. The signal was sampled with
P[S|x]=Constant and with P[S|x]= α|x|.

using AR-MA modeling. The values of ME60 for increasing
high frequency content r are shown in Table 2. The standard
deviation of the numbers in the table is about 0.6, so smaller
differences than 1 in a row cannot be considered significant.
It turns out that ZOH and Nearest Neighbor Resampling are
more accurate than LI in this example.

The irregular sampling rate is still rather high in all
simulations. That might be a reason that there is no signifi-
cant difference in the performance of Nearest Neighbor Re-
sampling and Zero Order Hold in most situations. In resam-
pling a purely random process, without a low frequency AR
part, it was found that ME10 was about 2 times higher for
ZOH than for NNR. Therefore, a preference is given to NNR
above ZOH. Also in Table 2, NNR was never significantly
worse than ZOH.

Different simulations with an AR(2) example showed that
in that example the performance of LI was better. It seems
that it depends on the characteristics of the true process
which resampling scheme is most accurate.

When the signal has little power at high frequencies

(small values of r), the performance of resampling is not af-
fected by the dependence of the interval between samples
with the current value of the velocity. For increasing r bias
effects are increasingly prominent. As the estimate of the
mean is biased, it’s constribution to the ME is considerable.
For r=5 and NNR the contribution of the mean to ME60 is
35.

5.  PRACTICAL DATA

Practical data have been used that were measured in mixing
layers of water. The data have been investigated before [11].
The LDA-data was resampled using Nearest Neighbor Re-
sampling. From the resampled data the spectrum was esti-
mated with AR-MA modeling as well as Windowed Perio-
dogram estimation. The selected AR-MA model is an
ARMA(5,4)-model. In Figure 3 the spectrum of this model is
compared to the windowed periodogram with window size
β=0.02. This is the window size for which the Windowed
Periodogram is closest to the AR-MA estimate. The differ-
ences are similar to those found in simulations.

6.  CONCLUDING REMARKS

Signal reconstruction is preferred over direct methods for
spectral estimation from LDA-data. Both Nearest Neighbor
Resampling and Linear Interpolation can be used. After re-
sampling the spectrum is estimated using AR-MA times se-
ries modeling. The automatically selected AR-MA model
provides a more accurate estimate of the spectrum than the
best windowed periodogram. The performance of AR-MA on
unknown practical data is similar to the calibrated perform-
ance in simulations.

The accuracy of a method is evaluated with the model er-
ror at time scale T, a measure for how well an observation
can be predicted by using all previous observations at inter-
vals kT.
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