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ABSTRACT

In this paper, a gradient based approach to adapt the
parameters of the Weighted Vector Median Filter is pre-
sented. The validity of the method is inspected through
a convergence test of the �lter parameters and with re-
sults of noisy image �ltering.

1 INTRODUCTION

Non-linear �lters using order statistics are useful tools in
digital image processing. Among them, the median �l-
ter is well known for its impulsive noise removing ability;
however, its only tunable parameter is its sliding win-
dow, shape or size. Hence, more 
exible �lters, such
as the weighted order statistics �lters (WOSF) have
been proposed; WOSF are parametrized by a set of N
weights, where N is the number of samples included in
the window, and a rank parameter. When the normal-
ized rank is set to 0:5, the WOSF reduces to a weighted
median �lter. A judicious adjustment of the weights
allows one for instance to reach a better preservation
of desired patterns. This emphasizes the need to de-
velop techniques for adequately choosing these param-
eters. A structural constraint approach [1] or an er-
ror gradient back-propagation algorithm [2] are e�cient
ways to adapt the WOSF parameters.
In order to process multi-component signals, standard
and weighted median �lters have been extended to
the multi-variate case, leading to the vector median
(VMF) and weighted vector median �lters (WVMF),
respectively [3]. As in the scalar case, WVMF are
parametrized by a set of N weights. Adaptive WVMF
have been proposed, for instance in [4]. However, no
\optimal" WVMF has yet been developed, in the way
of an optimization procedure, e.g. minimization of a
cost function.

In this paper, we propose a design of the adaptive
WVMF, based on the minimization of the quadratic or
absolute error, using an error gradient back-propagation
algorithm. This new technique can be used for the
WVMF de�ned with both L1 or L2 metric.
In Section 2, we describe the proposed basic optimiza-

tion procedure and a modi�ed version. Validity of the
method is inspected in Section 3 through the study of
the parameters convergence, and �ltering results using
the proposed adaptive WVMF are presented in Section
4, for the case of noisy color textured image �ltering.

2 GRADIENT BACK-PROPAGATION FOR

WEIGHTED VECTOR MEDIAN FILTERS

2.1 De�nition of the WVMF

The WVMF is de�ned by [3]

y = argmin
xj

NX
i=1

wikxj � xikLp
; (1)

where fxigi=1::N are the input vector samples included
in the window, fwigi=1::N are the associated weights to
be adapted, Lp is a norm (usually L1 or L2), and y is
the �lter's output.
When the min in eq.(1) is not unique, an additional rule
is required to choose the WVMF output sample.

2.2 Optimization of the WVMF

The optimal WVMF is derived from the minimization
of a cost function, which corresponds to the ML1E or
ML2E criteria. They are respective extensions to vec-
tor data of the well-known MAE and MSE : ML1E =
1
M

PM

i=1 kdi � yikL1
and ML2E = 1

M

PM

i=1 kdi � yik
2
L2
,

where fdigi=1::M are the noise-free vectors (desired out-
put) and fyigi=1::M are the estimates given by the �lter
output. The optimization is conducted independently
for each weight wl; using the stochastic approximation,
it can be summarized by

wk+1
l = wk

l + 2�(d� y)
@y

@wl

; 1 � l � N; (2)

for the quadratic error (LMS-type algorithm), and

wk+1
l = wk

l + � sgnv(d� y)
@y

@wl

; 1 � l � N; (3)

for the absolute error case, where sgnv(a) =
(sgn(a1); :::; sgn(aP ))T , sgn denoting the sign function
and a = (a1; :::; aP)T , � is the adaptation step, and wk

l



is the value of the weight wl at the k
th iteration.

Thus, the problem is to �nd a mathematical expression
for the derivatives @y

@wl
, 1 � l � N .

2.3 Mathematical expression for
@y

@wl

When the WVMF output is uniquely de�ned (i.e. there
is a single sample corresponding to the min in eq.(1)), it
can be demonstrated that the �lter's output is invariant
to an in�nitesimal variation of its weights. Hence, the
mathematical derivative @y

@wl
is null for each l, therefore

there is no need to look for an exact expression of the
derivatives. Thus, we consider the following approxima-
tion

@y

@wl

= lim
�wl!0

�y

�wl

� lim
j�wlj ! 0

�y 6= 0

�y

�wl

; 1 � l � N: (4)

Let us look for the smallest increment �wl of the weight
wl such that �y does not become null. Hence, the out-
put of the WVMF switches from the sample xj0 to a

sample xj1(l) due to a weight increment equal to �w
j1
l .

Using these notations, the derivative approximation can
be written as

@y

@wl

=
xj1(l) � xj0

�w
j1
l

; 1 � l � N: (5)

The problem is now to �nd the index j1(l) and the
weight increment �w

j1
l . Let us de�ne dj = d(xj) =PN

i=1wikxj�xik. The WVMF expression in eq.(1) can
be rewritten as y = argminxj d(xj). The partial deriva-
tive of dj with respect to wl is

@dj

@wl

= kxj � xlk: (6)

Denoting by d
0

j the aggregate weighted distance dj after
a weight incrementation �wl, we get

d
0

j = dj +

Z wl+�wl

wl

kxj � xlk dwl = dj + �wl kxj � xlk:

(7)
Hence, it can be seen that fd

0

jgj=1::N are a�ne functions
of the weight increment �wl. In Fig. 1, we represent the
fd

0

jgj=1::N a�ne functions through the set of N straight
lines f(Dj)gj=1::N . The intersection points of each (Dj)
with (Dj0 ) are the key issue of the problem; they are
computed for 1 � j � N (and for each l) through

d
0

j = d
0

j0
, dj + �w

j
l kxl � xjk = dj0 + �w

j
l kxl � xj0k

, �w
j

l =
dj � dj0

kxj0 � xlk � kxj � xlk
: (8)

Thus, we know each minimal weight increment �wj

l of
the weight wl implying d(xj) becomes lower than d(xj0).

Hence, for each l, �wj1
l = minj j�w

j

l j corresponds to the

minimal weight increment (or decrement) of wl which
allows the WVMF output to switch from the sample
xj0 to another sample, namely xj1(l). In the example
presented in Fig. 1, j0 = 4 and j1(l) = 2.
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Figure 1: Evolution of the aggregate weighted distances
according to the weight increment.

2.4 Alternative expression for
@y

@wl

The objective of this alternative is to estimate a more
global behaviour of the �lter when a weight is modi-
�ed. This global analysis is motivated by the fact that
a straight gradient approach, such as the one studied in
section 2.3, is con�ned to the search of a local minimum
of the cost function ; however, a local variation of the
WVMF output due to a small weight increment may
not be representative of the �lter behaviour for larger

uctuations.
The alternative method principle is to take into account
the increments �wj

l , j 6= j0, of the weight wl which are
necessary to make the WVMF output switch from the

sample xj0 to each sample xj 6=j0, when these switches
are possible. These required weight increments can be
seen as critical values in the �lter output evolution, in
the way that each one indicates a new direction (in the
vector component space) of the WVMF output varia-
tion. Then, the global behaviour may be illustrated
by the mean WVMF output increasing rate, computed
from all critical points. This leads to the following ex-
pression of the �lter output derivative

@y

@wl

�

�
�y

�wl

�
m

;

with

�
�y

�wl

�
m

=
1

card(Sl)

X
xj2Sl

xj � xj0

�w
j
l

; 1 � l � N;

(9)



where Sl denotes the whole set of potential output vec-
tors involved when increasing or decreasing the weight
wl. This second method is expected to be less reactive
than the �rst one but the weights evolution may be more
regular because of the mean behaviour.
The aim is now to �nd the location of the critical points.
These points correspond to each weight increment im-
plying that a given dj becomes lower that all other di
(the straight line (Dj) is then under the other lines
(Di)). This leads to the search of a convex curve, such
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Figure 2: Iterative search of the intersection points for
the alternative method.

as the one illustrated in Fig. 2. The intersection points
are iteratively computed ; this search starts with the
straight line (Dj0) and is independently conducted for
negative vs positive weight increments. At each step,
the computation of the intersections between the cur-
rent reference line (Dj�) and the others (Dj) is obtained
in the same way as in x2.3, using equation (8) where the
index j0 is then replaced with the current reference j�.
In the example of Fig. 2, the mean WVMF output in-
creasing rate is then given by�

�y

�wl

�
m

=
1

4

 
���!
X4X5

�w5
l

+

���!
X4X2

�w2
l

+

���!
X4X6

�w6
l

+

���!
X4X3

�w3
l

!
;

where
���!
XiXj =

��!
OXj �

��!
OXi = xj � xi. As a matter of

comparison, the method of x2.3 would result in �y
�wl

=
���!
X4X2
�w2

l

, �w2
l being the smallest increment of the weight

wl implying a WVMF output switch.
Note that when a multi-intersection occurs, such as the
point I4;5 in Fig. 2, the new reference line is the one
having the larger slope for negative �wl and the lower
one for positive �wl, in order to keep the curve convexity.

3 PARAMETER CONVERGENCE TEST

The aim of the test is to study the evolution of the
parameters, and more particularly to assess whether the
parameters can converge to desired values. This test is
illustrated in Fig. 3. The input signal consists of a one-
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Figure 3: Schematic illustration of the convergence test.

dimensional (1D) fragment (70 pixels) extracted from a
textured color image, and periodically duplicated. The
1-DWVMF having a size of 5 samples is de�ned with the
L1 metric and is optimized with the method presented
in x2.3. The set of target weights is f1; 2; 3; 4; 5g and
the step � is set to 10-7. In Fig. 4, we give the results
of the convergence test. It can be observed that the
weights converge to values close to the normalized target
weights. At the convergence, which is reached in this
example after 620 iterations, the output y is equal to the
desired output d. Other simulations with di�erent sets
of target weights, as well as using the alternative method
of x2.4, lead to a weight convergence, for length pattern
of up to 70 pixels. This \positive" test illustrates the
validity of our optimization approach.
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Figure 4: Evolution of the weights.

4 RESULTS OF COLOR IMAGE FILTERING

In this section, we evaluate the performance of the
adaptive WVMF for removing impulsive noise. The in-
put image is a texture embedded in a R-G-B channel-



independent impulsive noise. The objective of the �l-
tering is to remove the impulses while preserving the
noise-free patterns. In Fig. 5, we present a black and
white illustration of the original noisy image and the re-
spective results of the adaptive WVMF and of the VMF
(which is equivalent to an unoptimized WVMF whose
weights are equal to 1), using a 5�5 pixels mask, the L1

metric and the optimization procedure of x2.4. This ex-
ample emphasizes the bene�t of using adaptive weights
for a better preservation of �ne details. We have to men-
tion that the di�erence between the VMF and WVMF
results is more sensitive when looking at the color images
on the display or after color printing; visual disturbance
due to the R-G-B impulses in the original image is also
reduced by the black and white conversion.
Other simulations using the method of x2.3, the L2 met-
ric and other input textured images have also shown a
signi�cant improvement over the unoptimized �lter. Ac-
cording to our simulations, the WVML2 seems to work
better with the optimization of x2.3 while the WVML1
performs better using the method of x2.4 ; the latter
leads to the best results among the possible con�gura-
tions generated by the two norms and the two optimiza-
tion versions. Comparative ML2E criteria are presented
in Table 1.

VMF WVMF WVMF
initial method alternative method

L1 1123 995 865

L2 1162 880 923

Table 1: Comparative ML2E for the VMF and the op-
timized adaptive WVMF de�ned with L1 or L2.

The optimization can be conducted without any refer-
ence to the noise free image ; the corrupted image is
then considered as the reference. Further simulations
have shown that the generated degradation of the per-
formances is weak, with regards to the gain due to the
adaptive �ltering.
Finally, we have to note that the central pixel of the

mask has been ignored here (wc = 0). The speci�cation
of wc should further improve the �ltering ; for instance,
wc should be chosen according to the occurrence prob-
ability of impulses in the case of impulse noise �ltering.
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Original noisy textured image.

Image �ltered by a 5�5 VMF.

Image �ltered by a 5�5 adaptive WVML1.

Figure 5: Comparison of the VMF and of the adaptive
WVMF for impulsive noise �ltering.


