
ADAPTIVE NONLINEAR FILTERING WITH THE

SUPPORT VECTOR METHOD

Davide Mattera� Francesco Palmieri� Simon Haykin��

� Universit�a degli Studi di Napoli Federico II, Dipartimento di Ingegneria Elettronica

e delle Telecomunicazioni, Via Claudio, 21, I-80125 Napoli, ITALY

e-mail: mattera@diesun.die.unina.it

�� McMaster University, Communications Research Laboratory,

1280 Main St. W., Hamilton, Ontario, CANADA L8S 4K1

ABSTRACT

The recently introduced Support Vector Method (SVM)

is one of the most powerful methods for training a Ra-

dial Basis Function (RBF) �lter in a batch mode. This

paper proposes a modi�cation of this method for on-line

adaptation of the �lter parameters on a block-by-block

basis. The proposed method requires a limited number

of computations and compares well with other adaptive

RBF �lters.

1 INTRODUCTION

RBF �lters constitute an important class of nonlinear �l-

ters [1] that can be used with success for describing the

relationships between input and output measurements

of a large variety of practical systems encountered in

diverse �elds of science and engineering such as commu-

nications, structural engineering, 
uid mechanics and so

on.

Adaptive �ltering can be viewed as the problem of

adaptively modeling an unknown time-varying system.

Let us suppose that the value at time step n of an output

time series x(�) depends, by means of an unknown (and,

possibly, time-varying) deterministic relation F , called

the target function, on the pseudo-state vector r(n)
4
=

[x(n� 1); : : : ; x(n� p); u(n); u(n� 1); : : : ; u(n� q)]T .

The �lter aims at approximating the unknown depen-

dence F on the base of the input and output time-series

measurements. The input-output mapping performed

by the RBF �lter is accomplished in two stages: 1) a

nonlinear transformation which maps the input space

onto an intermediate space; 2) a linear transformation,

which maps the intermediate space onto the output.

Therefore, the �lter output x̂(n) at time n is equal to:

x̂(n) =

KX
k=1

wk exp
�
�(r(n)� tk)

T
Ck(r(n) � tk)

�
;

(1)

where fK;wk;Ck; tkg is the set of �lter parameters.

The input-output measurements fu(n); x(n)gn=1;:::;L
can be organized into a set of pairs, called examples,

f(r(n); x(n))gn=1;:::;l. and the training process aims at

determining a value for the �lter parameters such that

expression (1) closely approximates the unknown target

function F .

Many methods have been proposed in the literature

[1] to determine the parameter values; many of them are

composed of two stages: in the former one, the value1 of

Ck and tk are determined by some unsupervised clus-

tering algorithm; in the latter one, the coe�cients wk
are determined in accordance with a mean-square er-

ror criterion. The main drawback of these methods is

constituted by the fact that the former stage is usually

not performed in accordance to some optimality crite-

rion but it is mostly based on heuristics. Moreover, the

number K of centers that assures a good approximation

is, essentially, considered known a priori and it is, in

practice, determined by means of some cross-validation

criterion.

Very recently, a new method, called Support Vector

Method, deeply rooted in Statistical Learning Theory

[5], has been developed for obtaining an approximation

to an unknown function from a set of given examples.

The SVM constitutes an approximate implementation

of the structural risk minimization [5], an inductive cri-

terion which aims at minimizing an upper bound on the

generalization error of the �lter, rather than minimizing

only the mean square error over the given examples. The

�rst experimental results of a comparison study with the

RBF method have shown [3] that SVM achieves better

performance with respect to the standard RBF method.

All these methods, however, in their typical formula-

tion, use a batch mode of computation as they calculate

an approximation of the unknown target function us-

ing the examples derived from a predetermined block of

observations. For example, should one decide to use a

larger data sample or to dynamically add new samples

as they become available on-line, one should discard the

previous estimate and calculate a new one from the be-

ginning. Since the �lter output x̂(n) in (1) depends

linearly on the weights wk, one could apply the clas-

1It is assumed often that Ck

4

= 1

�
2

k

I or even that �k = � for

all k.



sic methods of linear �ltering [4, 1] to update the sec-

ond stage. However, the other �lter parameters , in the

�rst RBF stage, cannot be, so easily, adapted with these

methods. Gradient descent techniques can be applied,

but the rigorous formulation of SVM may be lost since

convergence may remain unpredictable and the num-

ber of centers has to remain �xed. An interesting class

of RBF methods (see references in [6]) has been pro-

posed for determining all the �lter parameters with an

extended Kalman type algorithm. An interesting ver-

sion of these methods, which does not need a priori

knowledge about the number of centers K, has been

proposed in [6].

In this paper, a modi�cation of the basic SVM ap-

plicable in a time-varying scenario is proposed. The

SVM approximation is adaptively modi�ed in a block-

by-block basis. The number of steps between successive

re-trainings is not �xed; in particular, the �lter is re-

trained only if it does not satisfy the requirement that

the approximation error is smaller than a given param-

eter ". In each re-training the previous structure is not

completely discarded, but its support vectors are kept

and added to the new set of examples from which the

new �lter structure is obtained. This allows to keep lim-

ited the necessary computational e�ort. A performance

analysis of this simple method is carried out by means

of computer simulations on the well-known Lorenz data

[2]; a comparison with another adaptive RBF method

[6] shows superior performance.

2 THE SUPPORT VECTOR METHOD

The method aims at achieving an "-approximation to

the unknown target function, i.e. the approximation

function is required to be within an "-mask around the

unknown target function. Given the set of l exam-

ples fri; yigi=1;:::;l, the approximation has the following

form:

x̂(n) =

lX
i=1

ciK(r(n); ri) + b ; (2)

where K is a �xed function that has to satisfy Mercer's

condition: Z Z
K(u;v)g(u)g(v)dudv > 0 ; (3)

for all g 6= 0 for which
R
R
g2(u)du < 1. A possible

choice for K that satis�es condition (3) is the Gaussian

kernel with �xed variance �2

K(x;y) = exp(�
1

�2
kx� yk2) : (4)

The linear coe�cients ci in (2) are set equal to ��i � �i
and obtained as solution of the following optimization

problem [5]:

max
��
i
;�i

�
1

2

lX
i=1

lX
j=1

(��i � �i)(�
�

j � �j)K(xi;xj)

+

lX
i=1

(��i � �i) yi �

lX
i=1

"(��i + �i) ; (5)

subject to the condition:

lX
i=1

(��i � �i) = 0 ; (6)

and, such that, for each i 2 f1; : : : ; lg,

0 � ��i � C; 0 � ��i � C ; (7)

where C is a �xed parameter and " de�nes the required

accuracy. At the solution only some values of ��i and

�i are di�erent from zero; the training examples ri,

such that ��i � �i is di�erent from zero, are included

in the representation (2) and are named support vec-

tors [5]. The structural complexity of the obtained �lter

and, also, the computational requirement of the train-

ing process depend, mainly, on the number S of support

vectors.

The constant b in (2) is determined by the following

relation:

b = yi �

2
4 lX
j=1

cjK(xi;xj)

3
5� " sign(ci) ; (8)

valid for any i such that 0 < ci < C.

3 THE ADAPTIVE SVM (ASVM)

The tracking of the output of an unknown �lter can be

solved by the basic SVM and by periodic re-trainings of

the �lter structure. If the batch SVM has to be utilized,

at each re-training one needs to repeat all the compu-

tations on an increasing example set. Clearly the com-

putational load could become quickly una�ordable. A

strict batch application of the basic algorithm in a peri-

odic re-training modemay also be inappropriate to track

suddenly changing systems because the past memory of

the method has to be appropriately selected. Moreover,

one needs to specify when perform re-training and ac-

count for the computational complexity.

The development of an adaptive version of the SVM is

based on the following property: the optimum solution

Sl provided by SVM on a set El of l examples is also the

optimumSl+1 on a new set of l+1 examples, obtained as

union of El and of a new example, if the absolute value

of the error of the solution Sl on the new example is

smaller than ". Therefore, re-training of the �lter is done

only if the �lter output does not satisfy the required "-

approximation, i.e. if, for, say,N consecutive time steps,

the error, averaged over the last, say, L examples,

E(n) =
1

L

LX
i=1

(x̂(n� i) � x(n� i))2 (9)

exceeds the required value "2.



The simpli�cation of the training algorithm is ob-

tained by utilizing as re-training set only the union of

the Support Vectors of the old �lter and the new N

examples on which the old �lter exhibits error larger

than "2. The optimality of the algorithm compensates

the reduction in the size of the training set necessary to

maintain low the computational requirements.

The rationale behind this method is clearly the fact

that the support vectors are really what carries the most

relevant information about the past data to solve the

speci�c mapping problem.

We summarize here the di�erent steps of the method:

1) The algorithm is initialized from the �rst s examples,

which are obtained from the �rst s+max(p; q) values of

(u(n); x(n)). Suppose now that the computation time

required to get the optimal parameters on these s ex-

amples is T0.

2) The corresponding �lter F0 with Support Vectors S0

is therefore available at time step s+max(p; q)+T0+1
4

=

l0+1. Let us call l0;1, l0;2, : : : , l0;N the consecutive time

steps, successive to l0, on which the average approxima-

tion error E(n) is larger than "2.

3) At time step l0;N re-training starts on the training

set TR1 constituted by the union of the set S0 and the

N examples at time instants l0;j j = 1; : : : ; N . Let us

name T1 the training time, S1 the correspondent set of

Support Vectors and F1 the solution. The �lter F0 is

therefore utilized from the instant l0 + 1 to the instant

l0;N +T1
4
= l1, the �lter F1 from the instant l1+1, and

so on.

For a �xed training set size, the computational re-

quirements of the training algorithm is mainly depen-

dent on the number of support vectors at the solution.

This number depends on the required accuracy which

is controlled by the approximation parameter ". There-

fore, the value of " allows to trade o� the accuracy of

the obtained �lter with the required computational com-

plexity.

The proposed method is naturally suited to a scenario

in which a highly-nonlinear target function varies with

a time-horizon of quasi-stationarity su�ciently long.

However, a correct choice of " allows to obtain good

performance in relation to the existing methods also on

scenarios with shorter horizon of quasi-stationarity. An

interesting property of the proposed method is the min-

imization of the number of Gaussian kernels in the ap-

proximation �lter needed to obtain the required accu-

racy; its absolute value depends on the complexity of

the unknown �lter structure.

4 SIMULATION RESULTS

In this section the results of a performance analysis of

the proposed method, carried out by computer simula-

tions, are presented and compared with that of the adap-

tive RBF method proposed in [6]. The time-series uti-

lized in our experiments is the output of the well known

Lorenz system [2]:

_x = �(y � x)

_y = �x z + rx� y

_z = x y � b z ;

(10)

with the following values of the parameters: � = 16,

b = 4 and r = 45:92. The set of equation (10) are

integrated with a fourth-order Runge-Kutta method

and generated 10000 samples at 16-bit resolution with

a sampling frequency of 40 Hz are generated. The

time-series is then normalized so that its mean-square

value is equal to one. Suppose that only the �rst com-

ponent x is observed and the pseudo-state vector is

r(n)
4
= (x(n � 1); : : : ; x(n � p))T with p = 10 and

q = 0. The free parameters in the SVM are three: C,

�2 and "; C and �2 are chosen equal to 3 and 7:5 respec-

tively while for ", that controls the required accuracy,

the two values 0:1 and 0:01 have been considered; more-

over, N = 10 and L = 30. Performance analysis is

carried out by simulating J = 20 di�erent realizations

of the whole process by integrating (10) with 20 di�er-

ent starting points. The squared error at time n in the

jth realization is computed as

�j(n)
4

=
1

M

MX
m=1

(x̂j(n+m) � xj(n +m))2 (11)

withM = 300, where xj(�) is the true time-series for the

jth trial, fxj(n+m);m = 1; : : : ;Mg are the outputs of

the �lter with parameters frozen at the value they had

at time n and with the true pseudo-state vector rj(n) at

the input; the performance is, then, evaluated through

the mean-square error (MSE) �(n)
4
= 1

J

PJ

j=1 �j(n).

Fig. 1 shows both the MSE in dB of the classic batch

SVM and of the ASVM for Lorenz data for two di�erent

values of required accuracy " = �20dB (" = 0:1) and

" = �40dB (" = 0:01). One can notice that the con-

vergence of the adaptive �lter is comparable with that

of the optimal batch �ltering algorithm which performs

total re-training at each new step.

The required number of support vectors, at time step

n = 2000, is quite similar in the two cases. In fact, for

ASVM it is equal to 22 and to 104 for " = �20dB and

" = �40dB respectively, while in the batch SVM it is

equal to 34 and 148 respectively. The ASVM, therefore,

can also be seen as a method for reducing the complexity

of the SVM, without a�ecting too much the approxima-

tion accuracy.

A comparison of the convergence performance of the

ASVM with one of the best adaptive RBFmethod is also

presented. The considered algorithm,Minimal Resource

Allocation Network (MRAN), introduced in [6], is based

on extended Kalman �ltering and has been shown in [7]

to obtain good accuracy with a simpler structure when

compared to the classical multi-layer perceptron.



200 400 600 800 1000 1200 1400 1600 1800 2000 2200
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

ASVM (ε = − 20 dB) 

SVM (ε = − 20 dB)

ASVM (ε = − 40 dB)

SVM (ε = − 40 dB)

MRAN−1

MRAN−2

n

M
S

E
 (

d
B

)

Figure 1: The MSE in dB for the two best choices

(named MRAN-1 and MRAN-2) of MRAN parameters

and for the SVM and ASVM for " = �20 dB (" = 0:1)

and " = �40 dB.

Fig. 1 shows the MSE for MRAN with reference to the

same Lorenz time-series. The ASVM method exhibits

faster convergence and better accuracy with respect to

MRAN.

Another advantage of the ASVM consists in the fact

that the number of free parameters2 is limited to two (C

and �). Conversely, the MRAN method requires the set-

ting of nine free parameters and it is not immediately

clear how their choice in
uences performances. More

speci�cally, it is not known in which way one can trade

o� the accuracy of the approximation with the complex-

ity of the obtained RBF. This trade o� is controlled in

the SVM by means of the parameter ". Fig. 1 shows

the results corresponding to our best two choices for the

MRAN parameters.

The computational complexity of the training pro-

cess for the ASVM is weakly dependent on the dimen-

sion p of the pseudo-state vector r(n) while it depends

strongly on the number of Support Vectors that are

needed to represent the target function within the re-

quired "-approximation. The complexity of the training

process for the MRAN is instead proportional to (K �p)2

where p is the dimension of the pseudo-state vector r(n)

and K is the number of centers. This number is auto-

matically selected by the algorithm and can vary at each

step since the algorithm can add new centers or prune

2Strictly speaking, also N , L and " can be considered free

parameters in the ASVM. However, their role is directly related to

the desired performance and not to the unknown target function.

them out as their linear weight remains very small for a

given number of steps.

The simulation experiments have also shown that,

sometimes, for certain choices of the free parameters, the

number of centers, required by the MRAN before con-

vergence, become so large to render the training time3

much larger than the one required by the ASVM. How-

ever, the simulations also show that the average number

of centers required at convergence by MRAN is gener-

ally smaller than that required by the ASVM. This is

the main disadvantage of the ASVM and it is due to its

inability to adapt the size of each center.

5 CONCLUSIONS

In this paper a modi�ed version of the SVM has been

introduced for adaptive �ltering. In the simulation ex-

periments performed on a well-known chaotic time se-

ries, the proposed method has shown superior perfor-

mance with respect to other techniques based on ex-

tended Kalman �ltering, both in terms of accuracy and

speed of convergence. The preliminary results presented

here render this method quite promising for nonlinear

adaptive �ltering applications.

REFERENCES

[1] S. Haykin, Adaptive �lter theory, III ed., Mc-Graw

Hill, 1996.

[2] E.N. Lorenz, \Deterministic nonperiodic 
ow", J.

Atmos. Sci., vol. 20, pp. 130-141, 1963.

[3] B. Scholkopf, K. Sung, C. Burges, F. Girosi,

P. Niyogi, T. Poggio and V. Vapnik, \Comparing

support vector machines with Gaussian kernels with

radial basis function classi�ers", IEEE Trans. on Sig-

nal Processing, vol. 45, no. 11, pp. 2758-2765, 1997.

[4] J. Stark, \Recursive prediction of chaotic time se-

ries", Journal of Nonlinear Science, vol. 3, pp. 197-

223, 1993.

[5] V.N. Vapnik, The nature of the statistical learning

theory, Springer-Verlag, 1995.

[6] L. Yingwey, N. Sundararajan, P. Saratchandran,

\Identi�cation of time-varying nonlinear systems us-

ing minimal radial basis function neural networks",

IEE-Proc. Control Theory Appl., vol. 144, no. 2,

March 1997.

[7] L. Yingwey, N. Sundararajan, P. Saratchandran,

\Performance evaluation of a sequential minimal ra-

dial basis function (RBF) neural network learning

algorithm", IEEE Trans. on Neural Networks, vol.

9. no. 2, pp. 308-318, March 1998.

3The simulation experiments were performed in the assump-

tion that the time required to execute the calculations needed

at each step were su�cient small to render possible the on-line

implementation of both methods.


