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ABSTRACT

The good convergence tracking properties of spatio-
temporal equalizers are pointed out and analyzed when
there is e�ective diversity. The analysis is illustrated
in the case of a frequency o�set between the baud and
sampling clocks that induces important time-variations.

1 Introduction

Equalization is a crucial point of the digital receiver
when the propagation is a�ected by intersymbol inter-
ference. It is usually studied assuming the channel is
invariant during the processing. However, this assump-
tion is not always met for high-rate transmissions, and to
our best knowledge no analysis is available in this case.
Abrupt changes occur in radio-mobile communications
when the mobile enters into a new street, the equalizer
should at this point start a new convergence procedure.
Channel drift may be due to Doppler e�ect or to a fre-
quency o�set between the transmitter baud clock and
sampling clock, see [3]. Good equalizer tracking abili-
ties are crucial for both abrupt changes and drifts in the
channel transfer function.

Simulations of transverse equalization show an in-
creased convergence speed when using spatial and/or
temporal diversity, i.e., either an array of sensors or a
sampling rate greater than the transmitting baud rate.
Such behavior has been reported for gradient descent
algorithms such as the Least Mean Square (LMS) [2],
as well as for the Constant Modulus Algorithm, [5].
However, this may sound contradictory with the results
in [10], where possible deterioration of the convergence
speed is noticed when using temporal diversity. There-
fore, we intend to give an analytical explanation of these
behaviors based on the observation that improved or de-
teriorated performances seem to be related to the chan-
nel disparity, i.e., the e�ective diversity, see [6].

We know that spatio-temporal diversity sometimes al-
lows improved mean asymptotic performances using a
�nite impulse response transverse equalizer. In order
to address the e�ect of spatio-temporal diversity on the
convergence speed and tracking capabilities, we study
the input / output mean square error during the tran-
sient convergence to the mean asymptotic setting. For
the study to be fair, we need also to look at the behav-
ior when asymptotic convergence in mean is achieved,

following the results of [7] in the conventional case.

2 Spatio-Temporal Equalization

2.1 Spatio-Temporal model

The spatial or temporal diversity of a factor (L > 1) is
modelized by a single input / multiple outputs system
([8]).
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Figure 1: Noisy Multi-Channel / Equalizer scheme

The signal received by the spatial-temporal equalizer
is composed by a L-dimensional observation :

y(n) =

QX

k=0

hks(n� k) +w(n)

where s(n) is the input scalar i.i.d. sequence with vari-

ance unity and h(z) =
PQ

k=0 hkz
�k represents the mul-

tichannel transfer function (a degree Q polynomial vec-
tor of length L). We denote �2 the variance of the spa-
tially and temporally white noise, w(n).
The transverse equalizer with transfer function (a

degree N � 1 polynomial vector of length L) g(z) =PN�1
k=0 gkz

�k is meant to restore a good estimation of
the input source with a delay �:

x(n) =

N�1X

k=0

g>k y(n� k) = ŝ(n� �)

Under channel invertability conditions ([8]) (i.e.,
no common root to all the components of h(z) and
N � Q) perfect equalization can be achieved, with �-
nite impulse response (FIR) equalizer, in the absence of
noise. It implies that when there is no noise, the equal-
izer output, x(n), can match exactly the delayed input
s(n� �). However in the noisy case, an in�nite impulse
response is required. Still, equalization with a FIR �l-
ter can achieve good performances in terms of input /
output Minimum Mean Square Error (MMSE) when the
amount of noise is not too high, [6].



2.2 Performances Measure

Equalization performances are measured by the input /
output Mean Square Error (MSE),

MSE(n) = E[jx(n)� s(n� �)j2]

Spatio-temporal equalization is analyzed using the refer-
ence adaptive algorithm, Least Mean Square algorithm
(LMS),

g(n+1) = g(n)��(x(n)�s(n��))Y(n)
�
; x(n) = g(n)

>
Y(n)

where g = (g>0 ; � � � ;g
>
N�1)

> is the equalizer impulse

response and Y(n) = (y(n)>; � � � ;y(n � N + 1)>)> is
the regression vector. MSE is characterized in the sequel
for both transient and asymptotical contexts.

3 Asymptotic performances

When using an adaptive algorithm, asymptotic con-
vergence is achieved in mean. We denote gopt this
mean value. Using LMS, gopt corresponds to achiev-
ing MMSE. Still, the equalizer taps jitter around their
mean values, inducing some Excess Mean Square Error
(EMSE). The total Mean Square Error (MSE),

MSE =MMSE +EMSE

characterizes the asymptotic, or steady-state, perfor-
mances.

3.1 MMSE

For small noise level, an expression of MMSE is given in
[6]. In the case of spatio-temporal e�ective diversity,

MMSE = �2�>� (T (h)
�T (h)>)�1��

where T (h) is the channel convolution matrix and ��
has all but its �th component are equal to 0. In the
conventional case, the MMSE (denoted MMSE0) is
the sum of an incompressible term due to channel non-
invertability, and of a term proportional to the noise
power �2. MMSE is always lower than MMSE0.

3.2 EMSE

In [7], the EMSE expression is approximated for a sta-
tionary channel,

EMSE =MMSE
�NPy

2

with Py = E[y(n)>y(n)�], the received power and �

is the algorithm step-size (� is small). The deriva-
tion makes this calculus valid whether there is spatio-
temporal diversity or not, so that we can use it in the
sequel. Moreover, we assume for the analysis that the
power received on each subchannel is the same, so that
Py = LPy0 where Py0 is the received power on each
subchannel.

3.3 Comparing spatio-temporal and conven-

tional equalizers

Comparisons between adaptive algorithms often con-
sider a similar EMSE value (by tuning accordingly the
step-sizes), [4]. The convergence speeds are then com-
pared. In order to make a fair comparison between
spatio-temporal diversity equalization (L � 2) and the

conventional case (L = 1), we consider in the conven-
tional case a N0 = NL-long equalizer. This would im-
ply in our case, �MMSE = �0MMSE0 where �0 is
the conventional algorithm step-size. Therefore, when
diversity allows a much smaller MMSE (MMSE <<

MMSE0), �0 should be much smaller than �, making
the comparison quite unfair. Moreover, the improve-
ment of the asymptotic performances doesn't ensure of
good tracking performances. Therefore, we will some-
times consider equal step-sizes, and sometimes equal
MMSE, in the sequel.

4 Transient behavior with diversity

In order to study the algorithm convergence, we will an-
alyze the evolution of the deviation V (n) = g(n)�gopt,
de�ned as the di�erence between the equalizer at the
instant n and the optimal equalizer. We assume, for
sake of easy calculus, that the observation vector y(n)
is zero-mean and temporally white even if this assump-
tion doesn't re
ect the reality. We suppose also that
jY(n)j2 = E

�
jY(n)j2

�
.

4.1 Mean and Mean Square deviation

The initial and the �nal convergence of the deviation
is respectively characterized by the mean deviation and
by the mean square deviation. However the analysis of
the convergence of this two terms is made by an equiva-
lent and indirectly manner in using the transformation,
Q(n) = �>V (n). � is an orthogonal matrix correspond-
ing to the eigendecomposition of the observation covari-
ance matrix R which is expressed as:

R = E[Y(n)�Y(n)>] = T (h)�T (h)> + �2I

The eigen-decomposition of R is such as (see [8]):

�>R� = diag(�1; : : : ; �N+Q; �
2; : : : ; �2| {z }

NL�(N+Q)

)

where the (N +Q) largest eigenvalues �1; : : : ; �N+Q are
associated to the signal subspace �S and the (NL�(N+
Q)) remaining eigenvalues, equal to �2, correspond to its
orthogonal complement, the noise subspace �W .

4.2 In
uent eigenvalues

We can establish an exact evaluation of the quantities
E [Q(n)] and E

�
jQ(n)j2

�
according to their values at the

instant (n� 1), following [9] and [7]. E [Q(n)] =

diag(: : : ; (1� ��l); : : :| {z }
N+Q

; : : : ; (1 � ��
2); : : :| {z }

NL�(N+Q)

)E [Q(n� 1)] (1)

The variance of each component, E
�
jqi(n)j

2
�
= ()

(1 � �(2 � �NPy)�i)E
�
jqi(n� 1)j2

�
; i = 1; :::;N +Q;

(1 � �(2 � �NPy)�
2)E
�
jqi(n� 1)j2

�
; i = N +Q+ 1; :::;NL

First, we consider that the coe�cients of the equalizer
have been initialized with g(0) = (0 : : : 0)>. So that

Q(0) = ��>gopt = �[a1 : : : aNL] (2)



In absence of noise (�2 = 0), the spatio-temporal
equalizer gopt inverts strictly the channel. It is called
Zero-Forcing equalizer, is orthogonal to the subspace
noise �W and belongs to the signal subspace �S .
�>gopt = [a1 : : : aN+Q0 : : : 0]. (1) and (4.2) become :

E [Q(n)] = [: : : ; (1 � ��l)
nE [wl(0)] ; : : :| {z }

N+Q

; : : : ; 0; : : :| {z }
NL�(N+Q)

]> (3)

and

E
�
jQ(n)j2

�
=

N+QX

i=1

[1� �(2� �NPy)�i]E
�
jqi(n� 1)j2

�
] (4)

The (NL � (N + Q)) last terms of E [Q(n)] and
E
�
jQ(n)j2

�
, associated with �2 = 0, are zero. Only the

eigenvalues linked to �S contributes to the convergence
of E [Q(n)] and E

�
jQ(n)j2

�
.

In presence of a small amount of noise (�2), the equal-
izer achieves a trade-o� between the subspace �S and
�W , but is still very close to the noise-free expression,
[6]. Therefore, the contribution of �S in the expres-
sion of gopt is most important than that of �W . The
(NL� (N +Q)) last terms of E [Q(n)] and E

�
jQ(n)j2

�
,

associated with �2, aren't anymore zero but their evolu-
tion remain negligible with respect to the (N +Q) �rst
taps.
When g(0) 6= [0 : : : 0]>, the NL� (N +Q) last terms

of E [Q(n)] and E
�
jQ(n)j2

�
, associated with �2, aren't

zero. Also the smallest eigenvalues have detrimental in-

uence in the transient convergence of the algorithm.
Since we would like to have the non-in
uent taps equal
to 0, an initialization to the NL � (N + Q) last coe�-
cients of the equalizer at 0 is the most sensible thing to
do. This setting is assumed in the sequel.

4.3 Importance of disparity

We have just seen that the transient behavior of the
LMS depends mostly on the eigenvalues in the signal
subspace. So that a measure of convergence rate (similar
to that in [7]) could be given by the e�ective condition
number de�ned as,

�eff =
�max(Signal)

�min(Signal)

�max(Signal) and �min(Signal) are respectively the maxi-
mum and the minimum values of signal subspace eigen-
values, which are also the eigenvalues of T (h)>T (h)�.
�eff is therefore the condition number of T (h)>T (h)�,

�eff = kT (h)>T (h)�kk(T (h)>T (h)�)�1k

�eff is also inversely proportional to the determinant of
T (h)>T (h)� ([6]) given by,

det(T (h)>T (h)�) =
X

k<l

Kk;l

Y

i;j

jzik � z
j

l
j2

where Kk;l is some polynomial bounded function of the
subchannels k and l and (zik)i=1;::Q denotes the set of
roots of subchannel k.
This implies that �eff should be a good way to mea-

sure the e�ect of channel disparity on transient behav-
ior as well as on asymptotic behavior. An example is

provided in 2 to show how LMS performances deterio-
rate when there is a lack of channel disparity. Equal-
ization was performed for a SNR=20 dB, N = Q + 3
and an average of 100 realizations of LMS with step-
size equal to 0.055. Channel (h1), which owns disparity,
has �eff = 3:08 and channel (h2), which lacks disparity,
has �eff = 233:9. As expected, the speed of convergence
and the asymptotic performances are worse when �eff
is larger.
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Figure 2: Equalization error versus iterations

5 Comparison

We have just shown that spatio-temporal equalizers
have good transient convergence performances as well as
asymptotic performances when there is e�ective channel
diversity. In the case of temporal diversity, as considered
in [10], there is often lack of disparity. The remaining
questions are: \does the spatio-temporal equalizer con-
verge faster than the conventional equalizer ? Or does
it deteriorates when there is lack of disparity ?"
We will next compare the evolution of the MSE versus

the number of iterations in both cases, in order to an-
swer this question because more precise results require
(study of the signal subspaces eigenvalues isn't su�sant
and di�cult analytical). The case of spatio-temporal
e�ective diversity (a) is modelized by a channel h(z)
whose L subchannels have no common zeros. The con-
ventional case (b), modelized by h(z) is equivalent to a
spatio-temporal channel which subchannels are all iden-
tical. To do so, we used results given in [9] and [7],
in order to extend the expression of the conventional
MSE(n) to the case of spatio-temporal diversity.
The MSE(n) can be generalized to both cases as:

MSE(n) = (1��NLPy)
2
MSE(n� 1)+ 2�NLPy MMSE

We note that the exponentially decreasing term (1 �
�NLPy) has the same value in the case (a) and (b),
only the MMSE changes.

5.1 Equal step-size

The convergence speeds are �rst compared with an iden-
tical step-size, i.e (�NPy = �0N0Py0).
It means that the convergence speed of the spatio-

temporal and conventional equalizers should be similar
as a �rst approximation.
The curves in �gure 3 con�rm the approximation.

The simulations is achieved with L=2 for SNR=30dB.
The common zeros between the case (a) and the case (b)
are (0:35;�0:14; 0:02) and (3:35;�3:54;�15) are the ze-
ros of the second subchannel in the case of diversity.
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Figure 3: MSE versus iterations: with diversity (in full
line), conventional (in dotted line)

We conclude that with equal step-size, spatio-
temporal and conventional equalizers converge approx-
imately with the same speed, whether there is e�ective
diversity or not.

5.2 Equal EMSE

Equal EMSE implies in our case, �MMSE =
�0MMSE0. Therefore, when diversity allows a much
smaller MMSE (MMSE << MMSE0), �0 should be
much smaller than �. This should induce an decrease of
the convergence speed of the conventional equalizer.
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Figure 4: MSE versus iterations: with diversity (in full
line), conventional (in dotted line)

At equal asymptotic performances, spatio-temporal
equalizer converge faster than the conventional's one
equalizer.

6 Case of time-varying channel

Finally, we are going to illustrate the tracking properties
of the equalizer with temporal diversity and the con-
ventional equalizer in the case of a time-varying chan-
nel. Good convergence properties should result in good
tracking capabilities. Tracking is a trade-o� between
convergence speed, � large enough to be able to to up-
date the correct inversion at each instant ([2], and a
small EMSE, small � ([7]). The channel variation is in-
duced by a drift due to a frequency o�set in the sampling
clock: the transmitter rate is 1=T and the receiver sam-
pling rate 2=(T + �). The channel is assumed to be ideal
and the frequency o�set results in �=T = 10�2, which is
larger than realistic values. The emitted data is an i.i.d
and binary sequence and SNR = 20dB. The LMS is
run with a step-size equal to 0:05, processing 100 real-
izations of a sequence of 500T, with di�erent values of
the equalizer length N . As we can see on Figure 5, the
FSE behave in a globally way best face to an high o�set
than the conventional equalizer. Between N = 6 and

N = 15, the performances of the FSE are better until
reach an optimal length which induce the smallest mean
square error. Out of this interval, the performances of
the both equalizer are identical and worst. BelowN = 6,
the squared error is very important because the equal-
izer is unable to remove the ISI induced by the frequency
o�set. Above N = 15, the squared error becomes large
because of the residual stochastic jitter due to the high
value of the step-size and of the noise, see [7]. In this
case, temporal diversity implies good tracking proper-
ties and an improved robustness to a very high level of
sampling clock frequency o�set.
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Figure 5: MSE versus length: with diversity (�), con-
ventional (o)

7 Conclusion

We have shown in this paper that spatio-temporal ef-
fective diversity improves a lot the asymptotic perfor-
mances and in a more subtle way the transient behav-
ior. Although calculus and simulations were made for
LMS, we can extend this analysis to other adaptive al-
gorithms in order to evaluate the contribution of the
spatio-temporal diversity.
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