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ABSTRACT

This paper presents a novel adaptive algorithm for the
estimation of discrete Fourier coefficients (DFC) of si-
nusoidal and/or quasi-periodic signals in additive noise.
The algorithm is derived using a least mean p-power er-
ror criterion. It reduces to the conventional LMS algo-
rithm when p takes on 2. It is revealed by both analytical
results and ectensive simulations that the new algorith-
m for p = 3,4 generates much improved DFC estimates
in moderate and high SNR environments compared to
the LMS algorithm, while both have similar degrees of
complerity. Assuming the Gaussian property of the esti-
mation error, the proposed algorithm including the LMS
algorithm is analyzed in detail. Elegant dynamic equa-
tions and closed form noise misadjustment eTpressions
are derived and clarified.

1 Introduction

Adaptive estimation of nonstationary sinusoidal signals
or quasi-periodic signals with arbitrary known frequen-
cies or periods is of essential importance in many diverse
engineering fields, such as digital communications, pow-
er systems, biomedical engineering, pitch detection in
transcription and so forth [1-7]. So far, Kalman filtering
based techniques [2,4], recursive least square (RLS)[8],
simplified RLS (SRLS)[9], LMS-type algorithms [5-7],
and sliding algorithms based on FIR or IIR notch fil-
ters [10,11], for examples, have been developed for this
purpose.

All the above-mentioned adaptive algorithms have
both advantages and drawbacks of their own. It seem-
s that the LMS-type (gradient-based) algorithms are
perhaps the most frequently used ones in real-life ap-
plications due to their low computational requirements
and good performances. Algorithm that posesses sim-
ilar complexity to, but enjoy better performance than
the LMS algorithm will have great appeal in real-life
applications. This work is devoted to presenting such a
new algorithm.

When the frequencies of the sinusoidal signal are not
known in advance, FIR type adaptive line enhancer
(ALE) and adaptive IIR notch filters can be used to
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produce very good estimates of frequencies [12, and ref-
erences therein]. Of course, there are a lot of cases where
the frequencies are given a prior [6,11).

This paper delivers two major contributions. F irst,
the new algorithm using the least mean p-power error
criterion is developed, which reduces to a new sign al-
gorithm and the conventional LMS algorithm when P
takes on 1 and 2, respectively. It should be noted that
this work is the first to mention the sign algorithm in
the context of adaptive estimation of sinusoidal signal-
s. It is found by both analytical results and extensive
simulations that the new algorithm with p = 3,4 work-
s much better than the sign and the LMS algorithms
for a very wide range of estimation scenarios. Second,
we present an elegant performance analysis for both the
new algorithm and the LMS algorithm. The analysis
for p =1,2,3, and 4 is carried out along the same pro-
cedures under the assumption that the estimation error
signal is Gaussian distributed. The dynamic proper-
ties (convergence in the mean and convergence in the
mean square) and closed form noise misadjustment ex-
pressions are derived and clarified.

Let the noisy measurement be

d(n) = s(n)+v(n)
i (@i coswin + b; sinw;n) +v(n) (1)

i=1

where w; is the arbitrary frequency of the i-th compo-
nent, known in advance or estimated by some adaptive
frequency estimator. w(n) is the additive white noise
with zero mean and variance o2. It is required to design
an adaptive algorithm that is capable of estimating the
DFCs of s(n) contaminated by v(n). Here, the p-power
error criterion is used to design the adaptive algorithm.

J(n) = Efle@n)P], p>1 (2)
e(n) = d(n) - 3(n), ()
(n) = Zq: (d,- cosw;n + b; sin win) . (4)

i=1

Fig.1 demonstrates the adaptive scheme. The new



algorithm is given by

Ain+1)=Ain) + pie?~H(n)X;(n) (5)
for even p, and
Ai(n+1) = Ai(n) + wisgn(e(m)e (m)Xi(n)  (6)
for odd p, where

[cosw;n sinw;n]T, (7)
[a:(n) bi(n)]T. 8)

s
g
I

This paper is organized as follows. In Section 2, we
provide an extensive and elegant performance analysis
for the new class of algorithms including the conven-
tional LMS algorithm. Some representative simulation
results will be given in Section 3 to prove the better
performance of the new algorithm and to support the
analytical findings. Section 4 gives the conclusions.

2  Performance analysis

In this section, we give the performance analysis of the
new algorithm. The analysis is based on the assumption
that the error signal is Gaussian distributed along the
convergence process. Similar assumption has been suc-
cessful for the performance analysis of an echo canceler
[13]. We first confirm the validity of this assumption.

2.1 Gaussianity of the error signal

The Gaussianity of the estimation error e(n) has been
confirmed at many points of the transition and steady-
state stages in an ensemble-averaging sense. We omit
the simulation results due to the space limitation. This
assumption will make the analysis simpler and elegant,
especially for odd p.

2.2 Diﬁ'erence equations

Let
€, (n) = a; —a(n), 9)
&, (n) = bi—bi(n), (10)
Jo;(n) = E[(a:(n) - a;)’] = E[e2,(n)], (11)
o, (n) = E[(l;i(n)—bi)z]=E[s§',(n)]. (12)

The mean and variance of e(n) are calculated by

q
Eein) =Z(E[5a.~ (n)] coswin + Ele, (n)]sinwin), (13)

i=1

g
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Oim = E (07, (n) COS win + 07, (., sin win) +a; (14)

i=1

where
rff,.,-w = E[ez, (n)] - Ele,, (n))?, (15)
o2, = Ele} ()] = Ele,, (n)]. (16)

In the analysis followed, we assume p = 3. Through the
same derivation process, the analysis for p = 1,2, 4,-..
can be performed.

The difference equations for the convergence in the
mean are derived as, after some complicated calcula-
tions,

Ele,,(n+ 1))
Eley. (n +1)]

= Ele,, (n)] — 2pi I3(n) coswin, (17)
Eley, (n)] — 2p; I3(n) sinwn (18)

1

where

I(n) = / sgn(e(n))e?(n)p(e(n)) de(n)
1 I‘Le(n) 2
=\/gﬂe(n,0’,(")e_§<m) +2 (/‘f«'n) +‘7e2<u))

X sgn (—i“"’) erf ( ——Z”") D ) (19)
e{n) e(n)
r t2
erf(z) = _2; e %ar (20)

and p(e(n)) is the Gaussian PDF of the error signal e(n).
For the convergence in the mean square, we have

Joi(n+1)  =Jo,(n) - 2u;E[sgn(e(n))e?(n)e,, (t)]

x cosw;n + p? E[e*(n)] cos® win, (21)
Joi(n+1)  =Jy,(n) ~ 2u:E[sgn(e(n))e* (n)e,, ()]
x sinwin + u? Efe*(n)] sin? w;n. (22)

Here, we also assume that e(n) and €,,(n), e(n) and
&y, (n) are joint-Gaussian distributed. After some com-
plicated algebra, we obtain

E[sgn(e(n))e?(n)e,, (n)]
_1 #e(n) 2
= Ae =‘;(Um) + Bsgn <__#,(..,> erf ( ——#‘(")') , (23)
Te(n) e(n)
2 2
A= \/;Ue(n) (pz(n)E[sal_(n)] +07, () COS win) , o (24)
B=2(o2, +u?,) Ele,,(n)] + 4. \02, () COSWiM, (25)

Elsgn(e(n))e*(n)e,, (n)]

1 ﬂe(n) 2
= A'e 2(64")) + B'sgn (h) erf ( ——’) , (26)

5 Oein) Ty
A = 1/;‘7«} (p:g(“)E[sbi(n)] + Gfbim sinwin) , o (27)
B' = 2 (062(") + Hf(u)) E[sb, (n)] + 4#:(71)0.2

€p; (n)

He(ny

sinw;n, (28)

Ele'(n)] = 304, + 642,02, +pt.. (29)

Substitution of (23)-(29) to (21) and (22) yields the d-
ifference equations. Note that the difference equations
for the convergences in the mean and mean square are
connected with each other, and all the dynamics of the
algorithm can be numerically obtained from them.



2.3 Noise misadjustment

Here, the steady-state property of the algorithm is con-
sidered. At steady-state, it can be found, by close in-
spections of (17), (18), that the algorithm is unbiased:

E[Ea.-(n)”n—mo = E[Eb,- (n)]lns00 = 0. (30)
It is also proved by using (21)-(29) that
Jag(n)ln-—roo = Jy, (n)lnﬂoov (31)

regardless of the signal frequencies and DFC magni-
tudes. From the difference equations for the mean
square error, one obtains

4\/?1,,,,(00) = 3ui(j=2;Jaj(oo)+af)%. (32)

Expanding the above equation in Taylor series expan-
sion and keeping the first-order term lead to

2 9 i 2
4\/;Ja,.(oo) - Ep,-av; Ja; (00) = 3p;o;. (33)

Then, for i = 1,2,---,q, the following simultaneous e-
quations are generated.
r4ﬁ— %/110’1, —gﬂlav _gﬂlav
~ 320, 4\/%‘— Juo0, —-2us0,
_gl‘qav ‘%P‘qav 4\/_%__ gﬂquJ
Jal (Oo) M1
Jay(00) K2
e =303 |". (34)
Ja, (c0) Hq

Letting J,,(00) = 3u;03z, we have from the above e-
quations

1
Ir = 4 .
4\/%‘ O
i=1

Therefore, the noise misadjustment is finally obtained

(35)

3piol

Ja;(00) = Jp, (00) = o (36)
4\/% ~500) u;
j=1
For other algorithms, we have
Sign algorithm (p=1) :
Ty
Jui(00) = Jy,(00) = —HT (37)

LMS algorithm (p = 2):

a2
Hi% (38)

q b
2- Zuj
Jj=1

Proposed algorithm (p = 4) :

Ja;(00) = Jp, (00) =

5piol

Ja.(00) = Uy, (00) = —
2 - 10032;1]-
Jj=1

(39)

From these elegant explicit expressions, we have the
following remarks in order:

¢ The numerators of the noise misadjustments derived
above are proportional to the p-power of the noise
standard deviation o,. Their denominators are neg-
atively proportional to the (p-2)-power of the noise
standard deviation o,,.

e For small noise environment, the algorithms with larg-
er p will produce much smaller noise misadjust-
ments. However, for larger additive noise (o, >>
1), they will have large noise misadjustments, which
is undesirable.

e Loose stability bounds can be derived from the above
noise misadjustment expressions by letting them
positive. For example, for p = 4, we have
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q
pi>0, 0<> p;i< (40)

i=1
3 Simulation results

To compare the four algorithms (p = 1,2, 3, 4), we let
the steady-state MSEs of the LMS algorithm be the
base. The MSEs of the other three algorithms are ad-
justed to have the same values as the base by using
different step size parameters of their own. The ana-
lytical dynamics of all the algorithms can then be eas-
ily obtained by solving the established difference equa-
tions numerically. Simulations are also carried out for
these step size parameters. For concise notation, here
we let the MSEs of the LMS algorithm be Ji™*(00), and
Hi,sgn, Hiims, Hi,p3, i ps indicate the step size parame-
ters of the sign algorithm, the LMS, and the algorithms
with p = 3 and 4, respectively.

Letting the i-th MSE of the algorithm with p = 3 be
equal to that of the LMS yields

ms 2 9
3uipaoy = Jg7(00) | 4 . 5%2#;‘,;;3 (41)
Jj=1

Summing the above equation leads to



q
Y s = = : (42)
=t 303 + gavz Ji™ (00)

i=1

Then, each step size parameter Mi,p3 can be readily ob-
tained by substituting (42) to (41). Step size parameters
for the sign algorithm and algorithm with p =4 can be
readily obtained in the same way.

Here, we show a typical result selected from a vast
number of simulations conducted to confirm the superi-
ority of the new algorithm over the LMS. Fig.2 demon-
strates the analytical dynamics and their simulated re-
sults of the four algorithms for a moderate noise situa-
tion. It is obvious that the new algorithm shows faster
convergence rate than the LMS, and the theory fits the
simulation excellently.

A representative comparison between algorithms with
P=2, 3, 4, 5, and 6 is given in Fig.3. It is obvious that
the new algorithm with p = 3,4 presents much improved
performance than the LMS, and the algorithms with
p =5 and 6 work poorer than the new algorithm. That
is why we have not paid attention to the algorithms with
p25.

4 Conclusions

To conclude, the proposed p-power (p=3,4) adaptive al-
gorithm works much better than the sign and LMS algo-
rithms. Its dynamic behavior and steady-state proper-
ties have been extensively investigated. The analytical
results show excellent fits to their simulated values.
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Figure 1: Block diagram of the scheme.
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Figure 2: Comparisons between the theoretical differ-
ence equations and their simulated values of the four
algorithms ( ¢ = 0.1,¢ = 3,100 runs).
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Figure 3: Comparisons among five algorithms with p =
2,3,4,5,6 (02 =0.1,¢ = 3,100 runs).



