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Abstract

In this work we propose a novel scheme for
adaptive system identi�cation. This scheme
is based on a normalized version of the least-
mean fourth (LMF) algorithm. In contrast to
the LMF algorithm, this new normalized ver-
sion of the LMF algorithm is found to be in-
dependent of the input sequence autocorrela-
tion matrix. It is also found that it converges
faster than the normalized least mean square
(NLMS) algorithm for the lowest steady-state
error reached by the NLMS algorithm. Sim-
ulation results con�rm the superior perfor-
mance of the new algorithm.

1 Introduction

The least mean-square (LMS) [1] algorithm has
been used in many applications, this is due to its sim-
plicity. It is robust only if the noise statistics are
Gaussian, however, if it deviates from these statis-
tics its performance deteriorates. The least mean-
fourth (LMF) [2] algorithm, on the other hand, has
better performance than the LMS algorithm only if
the statistics of the noise are di�erent from Gaussian.

But for both of these algorithms, their conver-
gence behavior depends on the condition number,
i.e., ratio of the maximum to the minimum eigen-
values of the input signal autocorrelation matrix,
R = E[X(n)XT (n)], where X(n) is the input signal
to the adaptive �lter.

Recently, new adaptive algorithms based on a
mixed-norm criteria [3]-[8] are found to result in bet-
ter performance than either the LMS or the LMF
algorithms in Gaussian and non-Gaussian environ-
ments. These have motivated the idea of looking at
a normalized version of the LMF algorithm, whereby

eliminating its dependency on the statistics of the in-
put signal and therefore increase its speed.

As was the normalized LMS (NLMS) [9]-[12] algo-
rithm advantageous over the LMS algorithm in two
respects [13]: 1) potentially faster converging algo-
rithm for both uncorrelated and correlated input data
[14]-[15] and 2) stable behavior for a known range of
parameter values (0 < � < 2) independent of the in-
put data correlation statistics [9], [14], in this work a
similar approach to that of the NLMS algorithm with
equally attractive features is proposed for the LMF
algorithm. The resulting algorithm will be called the
normalized LMF (NLMF) algorithm. The NLMF al-
gorithm will reduce the e�ect of the condition number
and therefore will increase the convergence speed of
the algorithm.

The objective of this paper is to examine the con-
vergence properties of the NLMF algorithm and com-
pare it to those of the LMF algorithm and the NLMS
algorithm. In the comparison of the LMF and the
NLMF algorithms, only the dependency of the eigen-
value spread of the input data correlation matrix
on the convergence behavior is examined. However,
when the NLMF and NLMS algorithms are compared,
the lowest steady-state error reached by the latter al-
gorithm is desired. As the simulations con�rm it, it is
found that the NLMF algorithm converges faster than
the NLMS algorithm. Of course, this does not con-
tradict the fact the NLMS algorithm converges faster
for a gradient step, at the expense of higher misad-
justment values.

The paper is organized as follows. Section 2
presents the proposed algorithm. In section 3, simu-
lation results of the new proposed algorithm are com-
pared to those of the LMF and NLMS algorithms.



2 Proposed Algorithm

The LMF algorithm is based on the minimization
of the mean-fourth error cost function, that is :

J(n) = E[e4(n)]; (1)

the error is given by :

e(n) = d(n) + w(n)�XT (n)C(n) (2)

where d(n) is the desired value, X(n) is the input
signal, C(n) is the �lter coe�cient of the adaptive
�lter and w(n) is the additive noise. This is depicted
in Fig. 1.
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Figure 1: Adaptive system identi�cation.

The �lter-coe�cient vector update of the LMF al-
gorithm is given by:

C(n+ 1) = C(n) + 2�e3(n)X(n): (3)

This algorithm depends on the input signal statistics,
that is on the eigenvalues of the input signal. To over-
come this dependency, the normalized LMF algorithm
is introduced, and its weight update recursion is given
by:

C(n+ 1) = C(n) + 2�e3(n)
X(n)

 +XT (n)X(n)
; (4)

where  is a small positive number.
Examining the mean behavior of Equation (4) un-

der the assumption that the input signal is indepen-
dent of the noise (both of zero mean) and the odd
moments of the noise are zero, and invoking the in-
dependence assumption [17], su�cient conditions for
convergence of the NLMF algorithm can be shown to
be given by [16]:

0 < � <
1

3E[w2(n)]
: (5)

It is clear from (5) that the step size, �, is no longer
dependent on input data correlation statistics (largest
eigenvalue, �max, of the autocorrelation matrix of the
input data) as it is in the case for the LMF algorithm
[2]:

0 < � <
1

3E[w2(n)]�max

: (6)

In terms of the computational complexity, the
NLMF algorithm when implemented as a shift-input
data requires one more multiplication, division, and
addition over the LMF algorithm, and only two more
multiplications than the NLMS algorithm.

3 Simulation results

In this section, we compare experimentally the per-
formances of the proposed algorithm to those of the
LMF and NLMS algorithms. Two experiments are
carried out where an unknown system, as depicted
in Fig. 1, is to be identi�ed under noisy conditions.
The input signal x(n) to the unknown system and to
the adaptive �lter is obtained by passing a zero mean
white Gaussian sequence through a channel used in
order to vary the degree of ill-conditioning on the se-
quence fx(n)g. The additive white noise, w(n), is a
zero-mean and uniformly distributed. The signal to
noise ratio is set to be equal to 20dB and the perfor-
mance measure considered is the normalized weight
error norm 10log10jjC(n) � Coptjj2=jjCoptjj2, where
Copt is the optimal impulse response of the unknown
system. Results are obtained by averaging over 600
independent runs. During the simulations, all the al-
gorithms are obtained for fastest convergence.

Two cases are considered for the sequence fx(n)g.
In the �rst case fx(n)g is uncorrelated while in the
second case fx(n)g is a correlated sequence.

In the �rst experiment the eigenvalue spread
(�max=�min) is equal to 11.8, and this is for the un-
correlated sequence fx(n)g. Figure 2 shows the con-
vergence characteristics for the NLMF and the LMF
algorithms.

It is found that the NLMF algorithm is una�ected
by the input data correlation statistics, in contrast to
the LMF algorithm. Even though the NLMF algo-
rithm gives a higher weight mismatch over the LMF,
as it is the case of the NLMS over LMS [15], the
NLMF algorithm outperforms the LMF as far as the
convergence behavior is concerned and the increase in
the dynamic range of the step size. The low steady
state value reached by the LMF algorithm is, however,
obtained at the expense of slow convergence. Similar
results are obtained for other experiments with dif-
ferent eigenvalue spreads, but due to space limitation
only the case of the eigenvalue spread of 11.8 is treated
in this paper.



The most attractive feature of the NLMF algo-
rithm is its capability to outperform the NLMS al-
gorithm. This is due to the fact that, when far from
the optimum solution, that is je(n)j > 1, the NLMF
algorithm exhibits faster convergence than the NLMS
algorithm. Figure 3 depicts this behavior where the
NLMF clearly outperforms the NLMS for the eigen-
value spread of 68.9. Notice that the two algorithms
are compared for the lowest steady-state error reached
by the NLMS algorithm.

In the second experiment, both the unknown sys-
tem and the adaptive �lter are of the same order and
excited by a correlated signal x(n) that follows the
AR model, x(n) = 0:8x(n� 1) + u(n), where fu(n)g
is obtained by passing a zero mean white Gaussian se-
quence through a channel to give the sequence fu(n)g
an eigenvalue spread of 68.9. Here in this case only the
convergence characteristics of the NLMF and NLMS
algorithms are studied to demonstrate the capability
of the NLMF algorithm to consistently behave under
such a severe situation. As can be seen from Fig 4,
the NLMF algorithm still outperforms the NLMS al-
gorithm. As in the case of the uncorrelated input,
the comparison index is the lowest steady-state error
reached by the NLMS algorithm.

4 Conclusion

This paper presents a detailed investigation of the
implications of using the normalized LMF algorithm
for the development of system identi�cation based al-
gorithms. The NLMF algorithm is found to be inde-
pendent of the input data correlation statistics. The
NLMF algorithm is also found to outperform the LMF
algorithm. When the NLMF algorithm is compared
to the NLMS algorithm for the the lowest steady-state
error, it is found that the former outperforms the lat-
ter.

On the whole, the paper examines the advantages
of the utilization of the NLMF algorithm in terms of
enhancing both convergence time and steady-state er-
ror in developing linear transversal �lter based system
identi�cation algorithms.
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