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ABSTRACT

This paper describes an algorithm for coding high qual-
ity audio signals using a switched ADPCM approach.
Several theoretical and practical issues are considered
as outlined in the paper.

1 INTRODUCTION

Nowadays, there is a rapidly growing number of com-
mercial application which require exchange of audio in-
formation. One of the approaches for coding audio
signals is based on ADPCM algorithms. Besides the
ISO/MPEG standard [1], there are currently several ac-
tivities on ADPCM-based approaches, such as the In-
tel/DVI, the Microsoft Wav-ADPCM or the ODA stan-
dards - for embedding audio signals into multimedia
documents.
The basic idea of the described algorithm is to use

RLS based adaptive prediction instead of LMS in AD-
PCM coders. As a matter of fact, the performance im-
provement obtained with RLS is very high. Of course,
RLS introduces a number of problems which has been
solved with a switching mechanism, as summarized be-
low.
The use of switched predictors in signal coding is an

old idea. Di�erently from early applications, however,
we used a switched scheme for facing the stability prob-
lems which arise when RLS is used in an ADPCM frame-
work.
One fundamental characteristic of RLS approches is

that they are not inuenced by the statistical proper-
ties of the signal as in LMS. Apart particular cases [8],
generally the convergence speed of RLS is much higher
than that of LMS. For this reason, ADPCM algorithms
with RLS adaptation can be used with high bandwidth
signals, such as audio signals. The tracking capabilities
of RLS is the reason why there are stability problems in
the coding system, as it will be explained more formally
in the paper.
Finally, it will be shown that the performance of AD-

PCM systems increase with frequency; if the predictor
is able to track the fast variations of the signal, the per-
formance of ADPCM would be very high.

The switching mechanism leads to an algorithm for
audio coding with the following main features:

� It has no coding delay;

� It has an O(N ) complexity, N being the predictors
order;

� The algorithm's basic scheme leads to performance
improvement over the G.722 coding algorithm;

� The switched mechanism yields a variable bit rate
coding system. Since, if the bit rate is lowered, the
performance degradation is quite smooth, the algo-
rithm can be used in embedded coding applications;

� It is a starting point for improved schemes which
might be obtained by using noise-shaping ap-
proaches.

The paper is organized as follows. In Section 2, the
algorithm is described in greater details and some theo-
retical results are reported. In Section 3 we report some
experimental results and in Section 4 some concluding
remarks are discussed.

2 The coding algorithm

The block diagram of the algorithm is depicted in Fig.1.
It is worth noticing that there are two di�erent stability
issues in this system. One is concerned with the nu-
merical stability of the RLS algorithm, and the other
is concerned with the input-dependent stability of the
coding system. The switching mechanism is aimed at
solving the latter type of instability.
Remark 1 In order to avoid possible mistracking prob-
lems, the updating step of the quantizers is shared be-
tween the two subsystems.

2.1 RLS Algorithms

Though characterized by a fast tracking behaviour, RLS
algorithms have numerical stability problems. Many ap-
proaches to overcome that problem have been derived,
such as the FTF, the Fast Lattice and the QR-type algo-
rithms [7]. In this work, however, we used a Square-Root
types RLS algorithm.
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Figure 1: Block diagram of the algorithm

To start dealing with them, let us �rst recall that
RLS-SQR algorithm is computed by the relations de-
scribed in Table I [6]:

eq1 F (n) = ST (n � 1)X(n)
eq2 L(n) = S(n � 1)F (n)
eq3 �(n) = �+ FT (n)F (n)
eq4 �(n) = 1=[�(n) + (��(n))1=2]

eq5 S(n) = 1=
p
�[S(n � 1) � �(n)L(n)F (n)T ]

eq6 �(n) = y(n) �HT (n� 1)X(n)
eq7 �q(n) = Q�1[Q[�(n)]]
eq8 ~�(n) = �q(n)=�(n)
eq9 H(n) = H(n� 1) + ~�(n)L(n)
eq10 ~y(n) = �~�(n) +HT (n)X(n)

Table I
These RLS equations perform a square root factoriza-
tion of the autocorrelation matrix. As it is well known,
the resulting RLS algorithm is quite robust from a nu-
meric point of view but it requires a lot of computations,
being of O(N2) order.
Although a number of fast RLS algorithms are avail-

able in the literature, we adopted the O(N ) RLS-SQR
algorithm reported in Table II [5]. The main reason of
this choice is that the algorithm is more accurate and
more robust in limited precision environments with re-
spect to other fast RLS algorithms, as shown experi-
mentally in [5].
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2.2 Stability of the proposed coding algorithm

The coding system includes a quantizer and a feed-
back loop and hence the overall system is nonlinear and

time varying. The issue of BIBO stability of ADPCM
systems has recently received great attention [2]. Us-
ing ADPCM-LMS models, instability sources have been
identi�ed in the overloading of the quantizer [3]. With
RLS adaptive prediction, however, the problems asso-
ciated with stability are much larger. In the follow-
ing, we consider an ADPCM system where the predictor
is updated with an RLS-SQR algorithm (this assump-
tion simpli�es the analytical derivations without limit-
ing their applicability).

Proposition 1 In an ADPCM system with an RLS

adaptive prediction algorithm, implemented by means of

a square-root approach, an overloading of the quantizer

leads to an error of the estimated predictor equal to

�H(n) = �n
Ln

�n
(1)

at the current time instant n and equal to

�H(n+ 1) = �H(n) + �n+1
[Ln+1 +R�1xx (n)�n]

[�n+1 + �2nR
�1
xx (n)1;1]

(2)

at the time instant n + 1. In the above relations, �n
is the perturbation of the estimation error, Rxx is the

autocorrelation matrix, Ln = R�1xx (n�1)X(n) and �n =
�+XT (n)R�1xx (n�1)X(n), � being the forgetting factor.

Sketch of the Proof Let us callM the maximumvalue
which can be quantized without overloading. Consider-
ing eq7 and eq8 we have, in overloading, �q(n) = M

and
~�(n) = �q=�(n) =M=�(n)

The variation of the � coe�cient is therefore �~�(n) =
[��M ]=�(n) or, letting �n = ��M , we have �~�(n) =
�n=�(n). From eq9, then, we obtain that the error on
the estimated predictor is given by (1). From eq1, it can
be concluded that

�F (n+ 1) = ST (n)[�n0N�1] = S(n)T1 �n (3)

Since R�1XX(n) = S(n)ST (n), from eq2 we have that
�L(n + 1) = S(n)�F (n + 1) = S(n)ST (n)[�n0N�1] =
R�1XX(n)1�n, where the notation Ai stands for the i-
th column of the generic matrix A and With eq3 and
(3) we obtain ��(n + 1) = �FT (n + 1)�F (n + 1) =
�2nR

�1

XX(n)1;1a: Using eq4 and eq5, it can readily shown
that

�S(n+ 1) = �(n+ 1)=
p
�[�2n(R

�1

XX (n)1S(n)1)+

+�nR
�1

XX(n)1F
T (n+ 1) + �nL(n+ 1)S(n)1]

Extending now eq6 as follows: �(n + 1) = y(n + 1) �
HT (n)X(n + 1), we obtain, using eq8,

�~�(n+ 1) = �n+1=[�(n+ 1) + �2nR
�1

XX (n)1;1]

Therefore, the �nal results of eq.(2) is obtained.



Let us consider now the LMS adaptation rule. It is
rather straightforward to show that the following result
holds.

Proposition 2 In an ADPCM system with a normal-

ized LMS adaptive prediction algorithm, an overloading

of the quantizer leads to an error of the estimated pre-

dictor equal to

�H(n+ 1) = 2�n�nX(n) (4)

at the current time instant n and equal to

�H(n+ 2) = 2��n+1[
(y(n) � �n)X(n)

(y(n) � �n)2
+ k X(n) k2]

(5)
at the time instant n+ 1.

Remark 2 We can note that, for the RLS case, the
coe�cients' perturbation depends recursively from the
perturbation at the previous step. Moreover, the typical
values of the parameters in the above equation have been
experimentally evaluated, and it was noticed that the
perturbation �H(n) is two order of magnitude greater
than the same perturbation in the LMS case. In conclu-
sion, the overloading for LMS is much less critical, by at
least two order of magnitudes, than the RLS case. This
result can also be deduced from the convergence speed
di�erence of the two adaptive algorithms.

The system stabilization problem, hence, is of funda-
mental importance. In [4], it was introduced a simple
stabilization scheme of the RLS algorithm based on a
periodic resorting to LMS. We instead used an adaptive
switching mechanism based on a minimumerror criteria,
as shown in Fig.1. The performance obtained with our
scheme are very much higher than that obtained using
the approach of [4]; in that case, in fact, the RLS section
is used only 30% of the time. Using our approach, the
RLS algorithm is used at about a 70% rate.

2.3 Sampling Frequency issue

The �rst experimental observation was that the system
performance increases at higher sampling frequencies.

Proposition 3 If the quantizer of a generic ADPCM

system is overloaded, then the following condition holds:

MS
I

fS
> M (6)

where M is the maximum value which can be quantized

without overloading, MS
I is the �rst order moment of

the spectral signal distribution and fS is the sampling

frequency.

Proof The quantizer is overloaded when

je(n)j > (2nbit � 1)�=2

given that e(n) is the error signal to quantize. Let us
suppose that the prediction system was able to accu-
rately follow the signal until the sample index (n � 1)
and that there is a sudden increase of the error signal.
This means that the reconstructed signal didn't track
the original signal, but it remained close to the recon-
structed signal at the previous time instant. In other
words, we can write the following relation:

e(n) = s(n) � ŝ(n) � s(n) � ŝ(n� 1) � s(n) � s(n� 1)

Moreover, let us assume that the analog signal s(t) be
derivable. By turning to the discretization process of
s(n), we can say that the time scale is divided into ele-
mentary time intervals dt and thet the signal is divided
into elementary signals ds. Since dt = 1=fs, fs being
the sampling frequency, or that dt �fs = 1, it comes out
that

e(n) � s(n) � s(n � 1) = [s(n)� s(n � 1)]=dt � 1=fs =

= ds=dt � 1=fs
Hence the overloading condition is represented by the
following condition: ds=dt � 1=fs > M . Recalling from
the Sampling Theorem that, for a generic signal x(t)
with limited bandwidth and �nite energy, the follow-
ing condition holds: jdx=dtj < MX

I , where MX
I =

1

2�

R !n
�!n

jX(!)jj!jd! is the �rst order moment of the
spectral signal distribution. We can therefore say that
the condition ds=dt �1=fs > M can be also expressed as
MS

I =fs > M .

Remark 3 From Proposition 2 it can be deduced that
the highest is the sampling frequency, the lowest is the
probability to overload the quantizer. In other words,
the performance increase with the sampling frequency.

2.4 E�cient coding of the side information

The quantization of the side information requires almost
1 bit/sample. However, some schemes for reducing the
overhead information sent to the receiver have been de-
vised. The best scheme is summarized as follows:
If the di�erence between the two reconstructed errors

is less than a threshold K1, or if both the errors are less

than another threshold K2, and if the quantizers are not

overloaded, then use the same predictor of the previous

time instant. Otherwise, send the a 1 bit information.

Using this scheme, which can be replicated at the
receiver, the side info has been reduced down to 0.1
bit/sample, simply by varying the two thresholds; some
results are reported in the next section.

3 EXPERIMENTAL RESULTS

The goal of the experiments is to �nd the best parameter
setting, as summarized below:

� optimum prediction orders for LMS and RLS



� optimum coding of the side information (K1, K2
parameters)

� number of quantization bits

� the best sampling frequency

Many experimental veri�cations and performance mea-
surements of the described algorithm have been per-
formed, using ten ITU's standard test signals which were
originally sampled at 48 KHz. The same data set was
downsampled at 22.05, 16, 11.025 and 8 KHz, maintain-
ing the highest quality. Some results are reported in
Fig.5, where the proposed system is compared with the
G.723 standard in order to quantify the increment due
to RLS (remember that the LMS part of the proposed
algorithm was realized with the G.723 ARMA adaptive
predictor algorithm). These results have been obtained
with N=15, 3 quantization bits for G.723 and a variable
bit-rate side information for the switched system.
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Figure 2: SNR performance vs side coding parameters
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Figure 3: SNR performance at di�erent prediction or-
ders

The performance obtained by varying the coding of
the side information (K1, K2 are the thresholds men-
tioned in II.C) vary smoothly with the sampling rate.
This opens to the possibility of using the coding algo-
rithm in embedded coding frameworks.
It is quite important to note that a subjective com-

parison with the G.722 standard show that the pro-
posed algorithm outperforms the G.722 for all the �les
of the test-set, with lower computational complexity.
The algorithm has been implemented in real-time on
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Figure 4: SNR comparison between G723 (circles) and
the proposed algorithm (squares) at 5 bit quantization

a 15 MFlops DSP, 320C30 family. The real-time system
worked uninterruptly for several days with many di�er-
ent input signals, from tonal and random noise to high
quality music, and no stability problem at all arised.

4 Conclusion

In this paper we have described an algorithm for coding
wideband signals. Although the performance are quite
good, the algorithm should be considered as a starting
point for further improvements. The current version, in
fact, has no noise masking processing and no particular
care in the bit allocation scheme has been given. These
two issues will be the following activities on this sub-
ject. Thus, we expect a further performance increasing
in the near future. The described algorithm has been
implemented in real-time in a oating point DSP.
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