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ABSTRACT

We introduce a likelihood framework for nonlinear sig-

nal processing using partial likelihood and use the result

to derive the information geometric em algorithm for

distribution learning through information-theoretic pro-

jections. We demonstrate the superior convergence of

the em algorithm as compared to least relative entropy

(LRE) algorithm by simulations. The performance of

�nite normal mixtures (FNM) based equalizers with dif-

ferent number of mixtures and di�erent dimension ob-

servation vectors is also discussed.

1 INTRODUCTION

The increasing demand for digital communication sys-

tems to operate at higher data and lower bit error rates

has emphasized the need for sophisticated signal pro-

cessing schemes which can function in non-linear, non-

stationary environments. To overcome the inherent lim-

itation of linear �lters, among other nonlinear tech-

niques, a number of neural network based signal pro-

cessing systems have been introduced (for a recent col-

lection of these applications see e.g. [9],[10]). These

systems have provided signi�cant performance improve-

ments especially when the underlying process involves

nonlinearities and/or the signal-to-noise ratio (SNR) is

poor. Among these approaches, radial basis functions

(RBF) have found unique application in communica-

tions, (e.g. in interference rejection [6], [8], and channel

equalization [7]) and have been noted for their ability

to approximate the optimal Bayesian decision bound-

ary. In this paper, based on a FNM probability model,

which is closely related to the RBF, we introduce a likeli-

hood framework for nonlinear signal processing. We use

a recent extension of maximum likelihood (ML), partial

likelihood (PL), as the cost function, which allows for

sequential processing of dependent observations to de-

velop the probabilistic framework for signal processing

with FNM. We have shown that the two conditions given

in [1] for the equivalence of accumulated relative entropy

(ARE) and maximum partial likelihood (MPL) are sat-

is�ed for the FNM [2]. In [12], FNM are applied to

channel equalization. However, for estimating the FNM

parameters, the batch expectation-maximization (EM)

scheme is used which is not suitable for an application

such as channel equalization which has to be ideally on-

line. In this paper, based on the FNM, we derive the

on-line information geometric em algorithm such that

PL is maximized (or relative entropy is minimized). We

demonstrate the superior performance of the em algo-

rithm as compared to gradient descent based LRE algo-

rithm by simulations. We also discuss the performance

of the FNM based equalizer with di�erent number of

mixtures and di�erent dimension observation vectors.

2 MPL FOR SIGNAL PROCESSING WITH

FNMS

Statistical parameter estimation theory has as its fun-

damental support maximum likelihood (ML) estimation

that provides estimators with nice large sample optimal-

ity properties and invariant with respect to functions of

the parameters. However, ML theory is traditionally

developed for independent observations, and a majority

of signal processing applications require processing of

dependent observations. In this paper, we use a condi-

tional distribution learning framework for real-time sig-

nal processing based on the partial likelihood theory.

Obtained as a partial factorization of the full likelihood,

PL possesses nice large sample properties of ML, and

more importantly, it can easily be characterized for de-

pendent data and easily used for sequential processing.

Hence, it overcomes the di�culties with other exten-

sions of ML for dependent data, such as conditional

likelihood, which, for easy speci�cation, requires that

the observations be known for the whole period (i.e., in-

cluding future observations). In these cases, the learn-

ing algorithm for conditional likelihoodmust be in batch

mode. PL, thus provides us with a particularly suitable

formation for real-time signal processing, which most of

the time requires on-line processing of dependent obser-

vations.

We can introduce the partial likelihood as follows:

Given a time series fxng, n = 0; 1; 2; � � � that takes

values from a �nite alphabet S = fa0; a1; :::; aMg, and
its time-dependent covariates (observations) fyng, esti-



mate the probability that xn takes a value from the given

alphabet S. We assume Fn = �f1; [xn�1; � � � ; x1; x0];
[yn; � � � ;y1;y0]g. Our aim is to estimate the conditional

probabilities: P (xn = aijFn) 8ai 2 S: The partial like-
lihood can then be written as

Lp(xn; �) � Lpn(�) =
nY

i=1

p�(xijFi) (1)

where xn = [xn; � � � ; x1]:
The relative entropy (RE), or the Kullback-Leibler

distance Dn(pkp�) [11], is a fundamental information-

theoretic measure of how accurate the estimated condi-

tional pmf p�(xnjFn) is an approximation to the true

conditional pmf p(xnjFn). The ARE can be de�ned

as In(�) =
Pn

i=1Di(p�0kp�). It is relatively easy to

demonstrate the equivalence of ML estimation to ARE

minimization when the observations are i.i.d. For the

neural network model de�ned in [1], we established the

equivalence of PL estimation to ARE minimization for

the general case of dependent observations. These two

conditions are: (1) the asymptotical stability of variance

and (2) the condition on the rate by which information

accumulates. In [2], we show that the equivalence of

MPL to ARE minimization is also valid for the FNM

model. Therefore, we can estimate/learn the param-

eters of the FNM model directly by PL maximization,

which minimizes the ARE distance between the true and

estimated conditional probabilities.

3 INFORMATION GEOMETRY OF MAXI-

MUM PARTIAL LIKELIHOOD ESTIMA-

TION

To construct the information geometry of PL estima-

tion such that the FNM parameters can be learned by

sequential updates, we proceed as follows: Given an in-

formation source from a certain environment, the set of

all related probability distributions form the manifoldS.
The set of distributions which are realizable by a selected

neural network structure is embedded, as a submanifold

M, in S. On the other hand, the distributions suggested
by the observed partial data form a submanifoldD in S.
The problem can then be posed as �nding a conditional

probability model (neural network) that minimizes the

distance between the realizable M and the observed D.
A suitable distance measure in this framework is relative

entropy. This minimization problem can be solved by

em algorithm, an alternating minimization of the RE,

which is proposed by Csisz�ar and Tusn�ady [5]. The net-

work inM that minimizes the distance is selected as the

desired one. Then, the point in D that minimizes the

divergence gives the estimated data completing the par-

tial observed data. Repeatedly applying above proce-

dure produces a sequence of neural networks, each with

the same parametrized structure but with di�erent pa-

rameter values. It can be shown that this procedure will

converge to the in�mum distance between M and D if

M and D are convex sets with �nite measures [5].

Assume that true distribution of channel output vec-

tors are included in a curved exponential familyM and

the observed data is in manifoldD. It can be shown that
for a given Q 2 D, the point P̂ 2M that maximizes the

partial likelihood is given by the m-projection of Q onto

M. Dual to the above statement, for a given P 2 M,

the point Q̂ 2 D that maximizes the partial likelihood

is given by the e-projection of P onto D. Hence we can
formulate the geometric em-algorithm [3] (e- and m-

projection algorithm) for maximum partial likelihood

estimation as follows:

Consider a FNM with hidden variable z (the index

within the mixture pdf) written as:

p(y; z) =

NX

i=0

�i(z)�i

(
p
2�)

dj�ijd=2

expf�1

2
(y � �i)

T��1
i (y � �i)g; (2)

where d is the dimension of the observation vector y

and �i(z) is the component index of the mixture model.

We proceed by writing the logarithm of the probability

distribution as:

P(y; z) = logp(y; z)

= �0
T��1

0 y � 1

2
yT��1

0 y

+

NX

i=1

�i(z)(log
�i

�0
� log

j�ij1=2
j�0j1=2

� 1

2
�Ti �

�1
i �i +

1

2
�T0 �

�1
0 �0)

+

NX

i=1

�i(z)y
T (��1

i �i ���1
0 �0)

�
NX

i=1

�i(z)y
T (

1

2
��1
i � 1

2
��1
0 )y

+ log
�0

j��1
0 j1=2

�1

2
�T0�

�1
0 �0 � log (

p
2�)

d
: (3)

This is a generalization of the construction given in [3]

to the multidimensional case. Note that in the channel

equalization application, all components of yi are con-

ditionally independent given the input sequence fxig
as a consequence of the statistical independence of the

additive noise. So, the covariance matrix �i is a diag-

onal matrix, �i = diag[�2i0; � � � ; �2i(d�1)]; i = 1; � � � ; N .

Let �i = [��2i0 ; � � � ; ��2
i(d�1)

]T ; i = 1; � � � ; N , �i =

[�2i0; � � � ; �2i(d�1)]T ; i = 1; � � � ; N , y = [y0; � � � ; yd�1]T and

Y = [y20; � � � ; y2d�1]T to write



r11 = y; �11 = �0
T��1

0 ;

r12 = Y; �12 =
1
2
�0;

r2i = �i(z); �2i = log �i
�0
� log

j�ij
1=2

j�0j
1=2

�1
2
�Ti �

�1
i �i +

1
2
�T0�

�1
0 �0;

r3i = �i(z)y; �3i = ��1
i �i � ��1

0 �0;

r4i = �i(z)Y; �4i =
1
2
�i � 1

2
�0;

(4)

where i = 1; � � � ; N .

The expectation parameter, � = E�(r), called the �-

coordinates of M, can be represented as

�11 =
PN

i=1 �i�i;

�12 =
PN

i=1 �i(!i + �i);

�2i = �i;

�3i = �i�i;

�4i = �i(!i + �i);

(5)

where �i = [�i0; :::; �i(d�1)]
T , and

!i = [�2i0; :::; �
2
i(d�1)]

T .

With the above �- and �-coordinates, we can represent

the information geometric em-algorithm as follows:

� Select an arbitrary initial vector û0, which gives the

initial distribution P̂0 2 M. Set t = 0. Repeat the

following two steps:

{ e-step: Calculate the e-projection of the

present P̂t onto Dt+1. Because at time t + 1,

yt+1 is observed but zt+1 is not observed, the

observed data sub-manifold Dt+1 is given by

Dt+1 = fr̂t+1jr̂t+111 = yt+1; r̂
t+1
12 = Yt+1;

r̂t+12i = �i; r̂
t+1
3i = �iyt+1;

r̂t+14i = �iYt+1g;

where �is are the free parameters correspond-

ing to the unobserved �i(zt+1), which can be

estimated as

�i = EP̂t
(�i(zt+1)jyt+1)

=
�̂i expf�1

2
(yt+1 � �̂i)

T��1(yt+1 � �̂i)gP
j �̂j expf�1

2
(yt+1 � �̂j)T��1(yt+1 � �̂j)g

Then, using r̂t+1 calculated above, we modify

the �-coordinates by

�̂t+1 = (1� �t)�̂t + �tr̂t+1; (6)

where �t is the learning rate selected as a de-

creasing sequence.

{ m-step: Use the gradient method to get the

next ût+1 by

ût+1 = ût + �tB[�̂t+1 � �(ût)]; (7)

where B = @
@u�(u) is the gradient matrix.

� Increment the iteration index, t = t+ 1.

The given em-algorithm for MPL provides good esti-

mates of the optimumbehavior through its e-projections

on the set of desirable distributions D. Each of these e-

projections is then used by m-projection to �nd the cor-

responding best neural network. The algorithm can be

thought of consisting of two parts [4]: One part provides

estimate of the best network behavior and the other part

�nds a neural network whose behavior closely approx-

imates this estimation. Hence, information geometric

em algorithm provides us not only with a new learning

algorithm, but also a method to understand the learning

process.

4 APPLICATION TO CHANNEL EQUAL-

IZATION

In this section, we present application of the likelihood

framework for nonlinear signal processing with FNM

to adaptive channel equalization. We consider trans-

mission of simple binary pulse amplitude modulated

data x(n) 2 f�1; 1g through a nonlinear nonminimum

phase channel such that the received signal is given by

yl(n)�0:2y2l (n) where yl(n) = 0:3482x(n)+0:8704x(n�
1)+0:3482x(n�2). In the �rst experiment, the observa-

tion vector at time n consists of y(n) and y(n � 1), and

120 training samples are used to train the FNM equal-

izer with 16 normal distributions using the em algorithm

such that the partial likelihood given by (1) is maxi-

mized. The former part of the training data are used to

initialize the 16 normal distributions. The average val-

ues of the �rst 3 observed vectors which belong to the

same normal distribution are assigned as the means of

the 16 normal distributions. The remaining 72 training

data are used to train the FNM equalizer sequentially.

The performance of the FNM equalizer is compared

with that of multilayer perceptron (MLP) equalizer of

similar complexity. A 2-18-1 perceptron equalizer is

trained by the traditional mean square error (MSE) and

the partial likelihood costs with 1000 training samples.

Number of training samples is chosen such that the al-

gorithm converges. There is also one delay in the MLP

equalizer. Fig. 1 shows the bit error rate (BER) curves

for the three cases which are averaged over 50 indepen-

dent runs. The information geometric em algorithm

based on FNM probability model can achieve much

faster convergence compared to those of the backprop-

agation (MLP with MSE cost) and the LRE [1] (MLP

with MPL cost) algorithms while it still can achieve bet-

ter BERs.

In the second simulation example, we address the

problem of correct network complexity determination

(order selection for the FNM model and the observa-

tion vector). We consider FNM models with 8, 16, and

32 normal components respectively. When the FNM

model has 8 mixtures and the observation vector is two

dimenstional, after 100 training samples, the equalizer
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Figure 1: BER curves for the geometric em (FNM with

16 normal mixtures) algorithm, the backpropgation (2-

18-1 MLP) and the LRE (2-18-1 MLP) algorithms
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Figure 2: BER curves for the geometric em for FNM

with di�erent number of mixtures and di�erent dimen-

sions of observation vector

converges. For the FNM model with 32 mixtures and

two dimenstional observation vectors, 180 training sam-

ples are used for training. In Fig. 2, the BER curve for

FNM equalizer with 8 mixtures and two-dimension ob-

servation vectors is quite close to that with 16 mixtures

and the same dimension observation vectors, especially

at low SNR values, as expected. The BER curve ob-

tained by the FNM equalizer with 32 mixtures and two-

dimension observation vectors is slightly better than the

16 mixture FNM equalizer with same dimension obser-

vation vectors at high SNR values but performs slightly

worse at low SNRs as overparametrization is likely to

generate problems for generalization at increased noise

levels. When we increase the dimension of observation

vectors from 2 to 3 for FNM equalizer with 32 mix-

tures, but using same 180 training samples, the BER

improves a lot at high SNR values. This is due to the in-

crease of the minimum distance between noise-free cen-

tres of FNM when the dimension of observation vector

increases.
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