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ABSTRACT

This paper analyzes adaptive linear prediction and the ef-
fects of the underlying optimality criterion on the prediction
error. It is well known that the signal-dependent optimiza-
tion process converts the linear �lter into a nonlinear signal
processing device and that this will inuence the statistics
of the �lter output in a way not expected from linear �lter
theory. For minimum-phase Lp-optimal linear predictors,
we can show that the prediction error is maximally close to
an i.i.d. process whose probability density function is given
by A exp(��jxjp). This result is applied to linear predic-
tive analysis-by-synthesis coding of speech and to predictive
decision-feedback equalization of channels with nongaussian
noise. Implications for testing time series for linearity or
gaussianity are discussed, too.

1. INTRODUCTION

Linear prediction is widely used in communications systems.
In source coding, it maps a given waveform onto a resid-
ual signal with less correlation among the signal samples.
This simpli�es quantization of the waveform and reduces
the quantization noise variance by the prediction gain. In
channel equalization, a noise predictor helps to minimize the
noise gain of decision-feedback equalizers and to accommo-
date delayed symbol decisions in the same structure. On a
more general level, linear prediction is the standard tool for
�tting linear autoregressive (AR) models to time series.
The implementation of linear predictors is usually based

on linear FIR �lters whose coe�cients are automatically ob-
tained from adaptation algorithms. This results in a depen-
dence of the �lter characteristics on some signal properties
and shows that the overall adaptive �lter operates as a non-
linear system.
It is common practice to abstract from this nonlinearity

and to analyze adaptive �lters in terms of linear �lter the-
ory. The direct e�ects of signal-dependent adaptation on the
processed signals themselves are rarely considered. It is the
purpose of this paper to address these e�ects and to demon-
strate how the optimality criterion underlying the adaptation
process determines the statistical properties of the prediction
error.

2. THEORY

We develop our theoretical analysis in four steps. Details of
proofs are omitted here for brevity.

Lemma 1 ([1]) Any L2-optimal linear one-step prediction-
error �lter

e(n) = x(n)�

NX
k=1

akx(n� k) (1)

is minimum phase (including the case N !1). As shown in
[1], the minimum-phase property can be preserved for a wider

class of weighted frequency-domain cost functions, too.

Lemma 2 ([2]) A stationary stochastic process fX(n)g
with a constrained Lp norm (or p-th absolute moment) of
its continuous �rst-order probability density fX ,

Lp(X) = E fjXjpg =

Z
fX(x)jxj

p dx = constant; (2)

achieves the maximum di�erential entropy rate �h(X) i� it is
an i.i.d. process with

fX(x) = A exp(��jxjp): (3)

Corollary 1 ([3]) Conversely, if the di�erential entropy

rate �h(X) of a stationary stochastic process fX(n)g is con-
strained to a given constant value, then only the i.i.d. process
with �rst-order density fX as given in eq. (3) achieves the
minimum Lp norm.

Lemma 3 If a stationary stochastic process fX(n)g is �l-
tered by a minimum-phase system with impulse response hk,
k = 0; 1; 2; : : : and h0 = 1, the di�erential entropy rate �h(Y )
of its output is identical to the input rate �h(X):

�h(Y ) = �h(X) + log h0 = �h(X): (4)

In particular, this identity holds for the entropy rates of the
original signal fX(n)g and the prediction error fE(n)g.

De�nition 1 The relative entropy rate (or Kullback Leibler
distance) �D(XjjY ) between two stationary stochastic pro-
cesses fX(n)g and fY (n)g is de�ned by [4]

�D(XjjY ) = lim
M!1

1

M

Z
fX(n)(z) log

fX(n)(z)

fY(n)(z)
dz; (5)

where fX(n) and fY(n) are the M-dimensional joint density
functions of the vectors X(n) = [X(n); X(n� 1); : : : ; X(n�

M +1)]T and Y(n) = [Y (n); Y (n� 1); : : : ; Y (n�M +1)]T,
respectively.

It can be shown that the relative entropy rate is always non-
negative, �D(XjjY ) � 0, and that �D(XjjY ) = 0 if the pro-
cesses fX(n)g and fY (n)g have the same probability struc-
ture. For gaussian processes, relative entropy rate equals the
Itakura-Saito distortion between their power spectra [4, 5].

Theorem 1 For a stationary process fX(n)g, the error pro-
cess fE(n)g of a minimum-phase linear predictor eq. (1) un-
der the Lp criterion is maximally close to an i.i.d. process
fZ(n)g with �rst-order density as in eq. (3), in other words,
their relative entropy rate �D(EjjZ) is minimum:

�D(EjjZ) = ��h(E)| {z }
�

�h(X)

+�

Z
fE(z)jzj

p dz

| {z }
Lp(E)

� logA = min : (6)



The relative entropy rate �D(EjjZ) of eq. (6) can be decom-
posed into two additive, nonnegative components:

�D(EjjZ) = D(fE jjfZ) + �R(E); (7)

where the relative entropy D(fE jjfZ) measures the distance
between the �rst-order densities of fE(n)g and fZ(n)g and
where the redundancy rate

�R(E) = h(E)� �h(E) = (8)

= lim
M!1

I(E(n);E(n� 1); : : : ; E(n�M)) (9)

measures the mutual information left among the prediction
error samples.

Note that the redundancy rate �R(E) is a nonnegative quan-
tity even for continuous-valued signals as considered here.
From the decomposition of the relative entropy rate, the op-
timum linear predictor may trade between the two objectives
of matching the �rst-order density of the error signal to a tar-
get density and of removing the statistical dependencies of
the original waveform.

3. APPLICATIONS

3.1. Synthetic signals

Apparently, a positive relative entropy rate �D(EjjZ) > 0 is
always an indicator of some mismatch between the observed
process and the adaptive system (characterized by three fea-
tures, i.e., the linear structure of the predictor, its order,
and the optimization criterion). We will start with the per-
fectly matched situation and proceed to various mismatched
situations.

Linear Lp-matched AR processes are de�ned as lin-
ear autoregressive processes with an i.i.d. innovation process
that has a density of the type eq. (3). If the predictor order
N is not less than the order of the linear AR system gener-
ating the process the relative entropy rate �D(EjjZ) vanishes
for a cost function Lp which is the negative log-likelihood of
the innovation process density. As a special (deterministic)
case, a sum of K sinusoids with 2K � N leads to a vanishing
prediction error for any Lp criterion.

Gaussian processes constitute a remarkable signal class
as their amplitude distribution is not changed by linear �l-
tering. Therefore, the distance of the densities D(fE jjfZ)
cannot be inuenced by the �lter optimization. The second
component is simple to evaluate for gaussian processes where
the redundancy rate is given by

�R(E) = �0:5 log �(E) (10)

with the spectral atness �(E) as de�ned in [5, eq. (6.24)].
In this case, the �lter adaptation will maximize the spectral
atness of the residual no matter which p is chosen for the
Lp norm.

Nongaussian i.i.d. processes have a zero redundancy
rate �R(X) = 0, so one expects that an optimum predic-
tor leaves us with an error process identical to the predicted
process. However, this is not true in general if the �rst-
order density of the predicted process has certain asymme-
tries. The simplest example is the L2-optimal �rst-order
prediction of a noncentral i.i.d. process where the optimum
predictor coe�cient a1 is given by

a1 =
E2[X]

E[X2]
: (11)

From this, the redundancy rate of the error �R(E) increases
to a positive value (i.e., adaptive linear prediction intro-
duces statistical dependencies into the prediction error which
are absent from the original process!) whereas the distance
D(fE jjfZ) decreases at the same time such that their sum
�D(EjjZ) is still minimized. Here, a better match to the
(gaussian) target density is achieved at the price of more
redundancy in the error.

Nondeterministic processes which are neither gaus-
sian nor i.i.d. will typically neither achieve a match in the
marginal density (D(fE jjfZ) > 0) nor in the dependence
structure ( �R(E) > 0). In this situation, the �lter adaptation
process may attain a smaller relative entropy rate �D(EjjZ)
by reducing either the distance D(fE jjfZ) or the redundancy
rate �R(E) or both.

Deterministic processes such as countable sums of si-
nusoids or chaotic signals are characterized by an in�nite
redundancy rate �R(X) = 1. Unless the predictor can
model the signal exactly, the linear prediction error remains
a nonzero deterministic signal with in�nite redundancy rate
�R(E) =1. In this undermodeling case, the minimization of
an Lp norm of the error can only be achieved by minimizing
the distance of the densities D(fE jjfZ). Therefore, the de-
pendency of the error statistics on the optimization criterion
will be most pronounced for this case. As an example, the
choice of a least-mean-squares criterion (LMS or L2 norm)
will result in an (almost) gaussian prediction error density
whereas a least-mean-absolute criterion (LMA or L1 norm)
will result in an (almost) Laplace density.

3.2. Testing for gaussianity/linearity

The statistical properties of the prediction error may largely
depend on the optimization criterion used for predictor de-
sign. This e�ect sheds doubt on the usual practice to indi-
rectly test the gaussianity or the (linear/nonlinear) depen-
dence structure of a time series on its linear modeling resid-
ual. While it is true that only a gaussian process will lead
to a prediction error which is exactly a gaussian process, ap-
plication of the popular L2 norm for predictor design leaves
us always with an error that is maximally close to a white
gaussian process. Note that this result goes far beyond the
usual observation [6] that linear �ltering of an i.i.d. process
increases its gaussianity: out of all linear, minimum-phase
�lters of a certain order N , the least-squares prediction er-
ror �lter maximizes the `white-gaussianity' of its output no
matter what the input statistics are.
From this and the discussion after eq. (11), testing proce-

dures such as the Hinich test [7] may actually run into numer-
ical di�culties when applied to the linear modeling residual
rather than to the original process. Our theoretical analysis
thus explains some experimental observations reported in the
chaos theory literature [8]. As a general caveat, one should
always use a non-L2 norm for predictor optimization when
running a conventional test for gaussianity on its residual.

3.3. Source coding of speech

Linear least-squares prediction is the core of linear predic-
tive analysis-by-synthesis (LPAS) speech coders [9] which are
widely used in digital cellular telephony. Already the �rst
studies [10, 11] reported that the linear prediction residual
has a �rst-order density which apparently is gaussian. This
led to two conclusions: �rst, that the speech waveform itself
may have gaussian statistics and second, that the codebook
used to model the prediction residual can be populated with
gaussian random numbers and still achieve a good waveform
match. While the second observation is correct the �rst ob-
servation is an overgeneralization as seen from voiced speech
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Figure 1. Time-domain waveforms and histogram estimates of amplitude probability densities for linear prediction of sustained sound
[m], sampled at fs = 8 kHz, total duration 2 seconds, predictor order N = 10. (a) Original waveform, (b) LMS error waveform, (c)
LMA error waveform (d) original signal histogram (linear scale), (e) LMS error histogram (log scale, solid = estimated, dashed =
theoretical), and (f) LMA error histogram (log scale, solid = estimated, dashed = theoretical). Waveforms show only a central 75 ms
segment of the data whereas histograms use all 16,000 data samples.

sounds. Their �rst-order density is usually multimodal, cf.
�g. 1.
Plot (a) shows a time-domain waveform segment of the

sustained consonant [m] and plot (d) its histogram (based
on 16,000 samples) which clearly shows three distinct modes,
i.e., a signi�cant deviation from a gaussian distribution. The
other two signals are prediction residuals obtained with 10th
order linear predictors which di�er only in their optimization
criteria: the LMS criterion (L2) in plots (b) and (e) and the
LMA criterion (L1) in plots (c) and (f). Filter optimization
was performed with recursive adaptation algorithms, the un-
normalized LMS algorithm for the L2 norm and the signed
error algorithm for the L1 norm [12]. The striking result is
that the residual histograms closely match their theoretical
minimum Lp densities plotted with dashed lines. Therefore,
no conclusions about the `true' innovation density should be
made in this case. Rather, voiced speech can be approxi-
mated by a sum of sinusoids and the chosen order N is far
too low to represent all the harmonics of this speech sound.
From section 3.1, a strong dependence of the error density
on the cost function is expected here. This dependence can
be exploited in speech coder design where a desired ampli-
tude distribution of the prediction residual can be achieved
via proper cost function selection.

3.4. Decision feedback equalization

Decision feedback equalization (DFE) can be viewed as an
enhancement to a forward linear equalizer that allows to min-
imize the noise variance at the input to the decision device
while maintaining the same residual intersymbol interference
(ISI). It can also be interpreted as cascading a linear equal-
izer with a linear prediction error �lter [13, 14]. While a
DFE implementation need not follow this interpretation, it
becomes advantageous if signi�cant delay of the decision de-
vice (e.g., due to Viterbi decoding of trellis-coded modulation
signals) has to be accommodated. A signal ow diagram is
given in �g. 2 which also de�nes the forward adaptation error
e1(n), its prediction ê1(n), and the prediction error e2(n).
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Figure 2. Predictive DFE structure: received signal r(n),
equalizer outputs y1(n) + ê1(n) = y2(n), adaptation errors
e1(n); e2(n), symbol sequences a(n); â(n).

We have simulated a single-carrier binary phase-shift key-
ing system with an FIR equivalent baseband channel model
(an order 5 lowpass) and additive deterministic interference
(a rectangular pulse with normalized frequency �IF = 0:1) at
an SNR of 5 dB. The forward �lter has M = 40 coe�cients,
the noise predictor N = 5 coe�cients. For comparison pur-
poses, the forward �lter is always adapted with the same
algorithm, i.e., recursive least squares with growing window
(forgetting factor � = 1) and we use the training mode (at a
delay � = 22) throughout the simulation.

For the noise predictor, the inuence of the optimality
criterion on the statistics of the residual noise becomes sig-
ni�cant as the usual mean-square error (MSE) is not the ul-
timate performance measure. Most of the probability mass
of the residual e2(n) should be concentrated within the re-
ceiver's decision thresholds to minimize the error probability.
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Figure 3. Mean-square error (MSE) of prediction residual and
symbol error probability of predictive DFE after convergence
for various optimality criteria Lp with p = 1; 2; 6. The circles
� indicate results obtained by averaging over several simulation
runs of 20,000 samples each where the last 10,000 samples
have been used for steady-state measurements. The dashed
line indicates the performance of the linear forward equalizer
alone (without decision feedback).

Therefore, the preferred optimization criterion for the linear
predictor is an Lp norm with p� 1.
Figure 3 shows the steady-state performance results for

three choices p = 1; 2; 6 using gradient-type algorithms as
described in [12, 15]. It is clearly seen that the L2 optimal
adaptation algorithm minimizes the MSE after the noise pre-
dictor while the L6 algorithm has the highest MSE but its
symbol error probability is reduced by more than an order
of magnitude. The improvement for the L6 algorithm is so
pronounced because the interference is deterministic and the
order M = 5 predictor cannot cancel it completely. With
gaussian noise, the same performance as with the L2 norm
is preserved. In that sense, the choice of a high Lp norm
increases the robustness of the adaptive DFE.

4. DISCUSSION

We have presented an information-theory based analysis of
how the choice of a cost function for optimum linear pre-
diction inuences the statistics of the prediction error. For
the most prominent special case, we have proved that least-
squares linear prediction will always yield a prediction resid-
ual which is maximally close to a white gaussian process.
Along this line, we have used a measure for the distance be-
tween the probability structures of two stationary stochastic
processes, relative entropy rate, which generalizes spectral
atness theory from the L2 case to more general optimiza-
tion criteria.
This observation opens the question whether there exists

a best cost function that should be recommended for gen-
eral use, i.e., when there is no prior knowledge of the pro-
cess statistics. Such questions have received previous con-
sideration under the title of minimum-entropy deconvolution
[6], projection pursuit [16], or independent component analy-
sis [17]. One answer is the minimum entropy cost function.
Minimization of the �rst-order di�erential entropy of the pre-
diction error for a given entropy rate is directly equivalent
to minimization of the error's redundancy rate. Unlike con-
ventional Lp optimization, this optimization approach cir-
cumvents the mismatch between the cost function and the
process statistics. For instance, a minimum-entropy linear
predictor will never introduce extra statistical dependencies
into the prediction residual. It is, therefore, the method of
choice if tests for the probability structure of the given pro-
cess are applied to the prediction residual.
On a more general level, we have demonstrated that infor-

mation theory is useful for analyzing both linear and non-
linear signal processing algorithms like the signed error al-
gorithm. This analysis is robust as it implicitly includes the
nongaussian/nonlinear case. Thus we can predict the system
behavior for situations where the adaptive linear system is
not matched to the process structure.
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