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ABSTRACT

Neural Networks can be used to estimate the a posteriori
probabilities of the transmitted symbols in digital com-
munication systems. In this paper we apply this prop-
erty to the on-line estimation of the bit error rate (BER)
in the receiver, without using any reference signal. We
discuss two di�erent approaches to BER estimation: (1)
computing the a posteriori symbol probabilities from es-
timates of the conditional distributions of the received
data, and (2) estimating probabilities by gradient min-
imization of a special type of cost functions. We show
that Importance Sampling (IS) techniques can be com-
bined with the �rst approach to reduce drastically the
variance of the probability estimates. Finally, we ana-
lyze the e�ect of channel variations during transmission.

1 Introduction

The application of neural networks to digital equaliza-
tion has been a topic of discussion in the technical lit-
erature during the last years; many experiments have
shown that neural equalizers obtain lower bit error rates
(BER) than conventional structures in many cases; how-
ever, it seems not easy to do it keeping, at the same time,
a moderate computational cost.
The Radial Basis Function (RBF) networks are one of

the most e�cient neural-network-based equalizers [1, 4].
They can compute optimal Bayesian decisions in chan-
nels with a �nite distortion function; they can man-
age non-linear channels, they can be adapted to a non-
Gaussian noise and, in a recursive form like that of Fig.
1, they can take optimal decisions based on all the re-
ceived samples. However, they are not used in practi-
cal systems because other detectors, like those based on
the Viterbi algorithm, have a similar performance and
complexity [6]: in fact, recurrent RBF detectors [4] and
sequence detectors are equivalent as the Signal to Noise
Ratio (SNR) increases.
At the judge of the author, the main di�erence be-

tween both detection schemes is given by the kind of
computations carried out before making the �nal de-
cisions: the RBF-based equalizers can be used to com-
pute the posteriori probabilities of the transmitted sym-
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Figure 1: Structure of an optimal Recurrent RBF net-
work (RRBF) for a �nite response channel, rk is the
received sample and fn is the noise probability density
funtion. The number of nodes grows exponentially with
the length of the channel response.

bols; this information is not provided by the sequence
detector. The advantages of using the posteriori sym-
bol probabilities for blind equalization and tracking in
time-variant environments have been discussed in sev-
eral works [3, 4, 7].

The ability to estimate posteriori probabilities is not
exclusive of RBF-based detectors. It is well-known that,
if a binary classi�er is adapted to minimize the mean
square error between its output and the class of the in-
put, the network output is an estimate of the a posteriori
probability of one of the classes. In [9, 5], general formu-
las for the cost functions leading to probability estimates
are provided for binary and multi-class problems.

In this paper we show another advantage of comput-
ing symbol probabilities: the estimation of the BER in
reception without any reference signal. BER estimates
can be used by the receiver as a measure of the reliabil-
ity of the data transmission process or even to control



the transmission rate in variable rate digital modems.

2 BER estimation with RBF equalizers

Let us assume that a transmitter sends a sequence fskg
of N independent symbols which belong to alphabet
A = fa0; : : : ; aM�1g. If the channel has �nite mem-
ory m and the noise is additive, the received samples
fxkg can be expressed as

xk = h(sk; : : : ; sk�m) + nk (1)

where nk are the noise samples and h is the chan-
nel distortion function, which may be non-linear. The
optimal symbol-by-symbol detectors select the symbol
which maximizes the \a posteriori" probability of be-
ing equal to the transmitted symbol: decisions fbskg are
given by

bsk�d = arg
n
max
i

fPrfsk�d = ai j x(k)gg
o

(2)

where d is the decision delay and x(k) is a vector con-
taining the received samples used to make the current
decision.
The RBF network can be trained in order to estimate

the conditional probability density functions of the ar-
riving samples, f(x j sk�d = ai). The posteriori proba-
bilities of the transmitted symbols P (sk�d = ai j x) can
be computed from this applying elementary statistics.
Since

Pk�d = 1� Prfsk�d = ai j x(k)g (3)

is the error probability associated to decision sk�d =
ai, it is immediate to show that Pk�d is an unbiased
estimate of the overall symbol error probability of the
detector, Pe:

EfPk�dg = Pe (4)

In the following, Pk�d will be called an RBF estimator
of the BER. An upper bound for the variance of the
estimate can be easily derived

�2 = EfP 2

k�dg �EfPk�dg
2 (5)

Since Pk�d < M�1
M

, EfP 2

k�dg < M�1
M

EfPk�dg =
M�1
M

Pe; therefore

�2 �
M�1
M

� Pe

1� Pe
�2mc � �2mc (6)

where �2mc = Pe(1�Pe) is the variance of the Montecarlo
(MC) estimate. Therefore, the variance of the proposed
estimate is less than that of the MC method. This is,
in general, a pessimistic bound. As an example, Fig.
2 illustrate the performance of the RBF estimate for
the equalization of the linear channel H1(z) = 0:319 +
0:620z�1+0:634z�2+0:323z�3+0:087z�4, for di�erent
values of the Signal to Noise Ratio; the vertical axis
represents the ratio between �2 and �2mc as a function
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Figure 2: Variance ratio �2=�2mc vs SNR for the linear
channel H1(z).The dotted line is the theoretical bound
derived in the text

of the Pe. The continuous line represents the bound
derived here.
Although other well-known BER estimation methods

provide lower variance estimates [8], the RBF estimates
have two major advantages: �rst, it does not require any
knowledge about the transmitted symbol, second, it can
be combined with Importance Sampling (IS) techniques
[2]. Note that

Pe = EfPk�dg

=

Z
1

�1

� � �

Z
1

�1

Pk�d(x)fx(x)dx

=

Z
1

�1

� � �

Z
1

�1

Pk�d(x)w(x)f
�

x (x)dx (7)

where

w(x) =
fr(x)

f�r (x)
(8)

Thus, if x follows the density f�x(x), product
Pk�d(x)w(x) is an unbiased estimate of Pe. Thus,
adding arti�cial noise to the received samples, we can
modify the density function fx(x), reducing the number
of samples that an accurate BER estimation requires.
As an example, the variance of the RBF estimator for
the linear channel H

2
(z) = 0:5+z�1 with SNR = 15dB

can be reduced by a factor of 104 by arti�cially multi-
plying the noise variance by a factor of 4. The main dis-
advantage of the IS method is that it requires a second
RBF structure to compute f�r . Also, as the posteriori
probabilities are quotients of densities, IS methods are
sensitive to inaccurate density estimates

3 BER estimates in time-variant channels

In practical situations, the channel response is not previ-
ously known by the user and must be estimated by the
receiver. Moreover, the channel response may change



during transmission, and the estimation algorithm must
work during data reception, without any training se-
quence. As a result, the channel response is partially
unknown and the channel estimate is not constant dur-
ing time.
As discussed in [7, 4], the e�ect of the channel varia-

tions can be considered by modifying the noise variance
estimate. From Eq.(1) we can write,

ek = xk�bh(sk; : : : ; sk�m) = �h(sk; : : : ; sk�m)+nk (9)

where �h is an error caused by an inaccurate estimate
of h. RBF equalizers use the noise variance to compute
conditional data densities. By computing them as the
average of e2k, the channel variations can be taken into
account. Fig.3 is an example of this; initially, a perfect
knowledge of the linear channel response H1(z) (de�ned
before), with SNR=18dB, was assumed. The channel
response was modi�ed at each symbol time according a
simple random walk model

hk = hk�1 + dhk (10)

where hk is a vector with the channel coe�cients and
dhk is a random zero-mean Gaussian vector with vari-
ance �2h. Decision-directed LMS was used for adaptive
channel estimation,

bhk = bhk�1 + �bekbsk (11)

where bsk is a decision vector, and bek = xk � bh(bsk).
The �gure compares the RBF estimate with the real

BER, for di�erent values of the channel variance, �2h.
Note that, in some cases, the equalizer is not able
to track the channel response and it fails in detecting
the transmitted sequence; this is a known problem of
decision-directed methods; other techniques has been
proposed to reduce this problems (see [7], for instance);
anyway, the adaptive algorithm is not the topic of this
paper. The important thing is that, even in the cases
where the channel is not accurately estimated, the equal-
izer obtains accurate estimates of the BER. This is es-
sential to detect an undesired behaviour of the equalizer
and re-start the training algorithm when it fails.

4 BER estimation with other neural networks

The RBF equalizer computes probabilities by comput-
ing, �rst, the conditional probability density function
(pdf) of the arriving samples. The main advantage of
the RBF equalizer is that it can compute the exact pdf
of the samples, but it requires a �nite channel response
and Gaussian additive noise.
Alternatively, we can estimate the posteriori proba-

bilities of the transmitted symbols without computing
density functions. It is well-known that neural networks
can estimate posteriori probabilities if the adequate cost
function is minimized during learning: the mean square
error or the cross entropy are some examples. In [9, 5], it
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Figure 3: BER estimation in a time variant linear chan-
nel H1(z). Random walk model.

is shown that any classi�er adapted in order to minimize
a cost function given by

C(y; s) =

M�1X
i=0

Z yi

si

g(�)(�� si)d� (12)

where g an arbitrary non-negative function, is minimum
when yi = P (si = 1 j x). The class of the input is
speci�ed by vector s, which has all components equal
to zero but a \1"; its position indicates the class. The
square error and the cross entropy are included in the
subset of cost functions given by

g(�) = �� (13)

for � = 0 and � = �1, respectively. Therefore, any
equalizer adjusted by minimizing these cost functions
can be used to compute BER estimates..
We evaluated the BER estimates based on a \Soft-

max" perceptron, whose outputs are given by,

yi =

nfX
j=1

yi;j (14)

where

yi;j =
exp(wi;j

Tx)Pc

k=1

Pnf

l=1 exp(wk;l
Tx)

(15)

that is, the network consist of cnf parallel linear �l-
ters whose outputs are the inputs to a soft-max non-
linearity; M is the size of the symbol alphabet and nf
s the number of �lters per symbol. The network has as
many outputs as symbols; obviously, in a binary case,
y1 = 1� y0.
It is not di�cult to show that the softmax perceptron

is equivalent to and RBF equalizer, in the sense that,
for any RBF weights, there exists parameters wi;j such



that both networks take the same decisions. However,
the softmax outputs have a probabilistic interpretation
(they lie between 0 and 1 summing 1 altogether), while
the RBF networks is based on density estimation.

We explored the BER estimates based on softmax per-
ceptrons for di�erent cost functions given by Eq.(12)
and (13). A similar performance was found for di�erent
values of � between �1 (cross entropy) and 0 (square
error).

Figure 4 shows BER estimates based on the Softmax
network with 4 �lters per symbols for a binary trans-
mission through linear channel H2(z) as a function of
the SNR. An adaptation step �k decreasing with time
according to

�k =
�0

1 + k=k0
(16)

was used, with, �0 = k0 = 20. The simulation shows
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Figure 4: BER estimation of a Softmax Perceptron with
8 �lters (\o"). Linear channel H2(z), 25000 training
samples and 25000 test samples. The true error rate is
indicated with \+".

that neural networks can be applied to BER estimate
in the receiver; again, we found that the equalizer de-
tects wrong training situations. However, RBF based
networks requires less training samples: 25000 symbols
have been used to train the equalizer of the example
above; more complex channels and lower error rates re-
quire an excessive number of training samples. In order
to �nd e�cient BER estimates in time variant channels,
faster algorithms may be required.

5 Conclusions

BER estimation in reception is essential to evaluate the
communication performance in real time, and to detect
wrong training cases in adaptive equalizers. We have
shown that non-linear equalizers can be used to estimate
the BER during data reception, without using any ref-
erence signal. We propose a simple estimation method

that can be applied to any equalizer that computes pos-
teriori probabilities of the transmitted symbols. Two
kind of structures have been explored: density-based
detectors, as the RBF and RRBF equalizers, and gen-
eral feedforward neural nets trained with the appropri-
ate learning algorithm. In the former case, it is found
that BER estimates can be applied even in time variant
channels, and Importance Sampling techniques can be
used to reduce its variance. On the other hand, feed-
forward neural networks avoid making unnecessary as-
sumptions about the channel response, although they
require longer training sequences.
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