
VLSI IMPLEMENTATION AND COMPLEXITY

COMPARISON OF RESIDUE GENERATORS

MODULO 3

Stanis law J. Piestraky;z Fabrice Pedrony Olivier Sentieysy

y ENSSAT | Universit�e de Rennes 1

LASTI, B.P. 447, 6 rue de Kerampont
22305 Lannion CEDEX, France

Tel: +(33) 2 96 46 50 30
e-mail: fnameg@enssat.fr

z Wroc law University of Technology

Institute of Engineering Cybernetics
50{370 Wroc law, Poland
Tel: +(48) 71 320 28 73

e-mail: sjp@residue.ict.pwr.wroc.pl

ABSTRACT

A generator modulo 3 (mod 3) is a circuit that generates

a residue mod 3 from a binary vector. It is an essential

circuit used to construct the encoding and checking

circuitry for arithmetic error detecting codes, such as

residue codes mod 3 and the 3N code, as well as some

residue number system hardware. In this paper, we

compare speed and area of varius VLSI implementations

of 16-input generators modulo 3. It is shown that the

generator built of full-adders consumes the least area.

On the other hand, the generator built as a tree of

special 4-input modules is twice as fast, although at the

cost of increasing the area by a factor of 1.7.

1 INTRODUCTION

A generator modulo 3 (mod 3) is a circuit that generates

a residue mod 3 from a binary vector. It is an essential

circuit used to construct the encoding and checking

circuitry for arithmetic codes with the check base A = 3,

i.e. residue codes mod 3 and the 3N code, as well

as some residue number system (RNS) hardware. The

arithmetic codes with the check base A = 3 are the

least redundant codes capable of detecting arithmetic

errors, since they only require two extra bits. Several

applications of arithmetic codes with A = 3 have been

reported e.g. in [1]{[5] and [9]. They include various

digital blocks protected with the residue codes mod 3,

such as: fast carry lookahead adders [1], serial [3] and

parallel multipliers [9], as well as parallel multipliers

protected with the 3N codes [4]. The extensive studies

of a complex VLSI processor entirely protected by the

mod 3 residue code as well as dedicated digital signal

processors with CED (also using the mod 3 residue

code) were reported in [9] and [5], respectively. Another

important �eld of application of the residue mod 3

hardware are digital signal processors employing residue

number system (RNS) arithmetic, with A = 3 as one

of the moduli [6]. In the latter case, the residue

generator mod 3 constitutes a part of the binary-to-

residue number system converter. Also, a k-operand

adder mod 3 can be seen as nothing else but the 2k-

input generator mod 3.

Several di�erent implementations of the generators

mod 3 have been proposed in the literature [2], [7]{

[13], but the area-time performance of all these residue

generators has been estimated on the gate level,

i.e. by the number of gates, gate inputs, and gate

levels. However, it has long been recognized that

such estimations can be highly inaccurate, as the chip

area consumed by the interconnections can reach even

40%. We have not been able to locate results of any

investigations reported in the open literature about the

performance of any of these generators, when they are

actually implemented in VLSI.

In this paper, we will present speed/area evaluation

of layouts of four versions of 16-input generators

mod 3, designed according to two essentially di�erent

approaches, which are currently known as the most

e�cient 'gate-level' circuits. Amongst them are included

the layouts of the generators obtained by using logic-

level synthesis tools using VHDL. One general approach,

presented in [12] allows for using only full-adders (FAs)

to build an entire generator. The other approach, which

relies on using multi-output threshold circuits Tn [13],

provides a number of alternative designs which allow for

optimization of the number of gates, gate inputs, or gate

levels. More detailed presentation of these methods will

be given in two sections that follow. The comparison

and layout details will be given in Section 4.

2 GENERATORS MOD 3 BUILT USING

FULL-ADDERS

Let X = fxn�1; : : : ; x1; x0g be an input vector of the

generator mod 3, where xn�1 is the most signi�cant

bit and x0 is the least signi�cant bit. The generator

converts an integer X =
Pn�1

j=0 2
jxj into jX j3 =

P
1

j=0 2
jsj , i.e. it computes jX j3 =

�
�
�
Pn�1

j=0 2
jxj

�
�
�
3

:

The generators mod 3 from [12] exploit the periodicity

of the series of j2j jA, where j2j jA denotes 2j mod A.

In particular, for A = 3 the half-period, i.e. the

distance between subsequent 1 and �1 is HP (3) = 1,

due to congruence �1 � 2 mod 3. As a result, an

entire generator mod 3 can be built using FAs only



| a sample 16-input generator built on the basis of

this concept is shown in Fig. 1. The simplicity of

such a generator follows from the observation that it

is su�cient to complement every input bit xi with odd

i (whose weight mod 3 is �1) as well as all internal

carry signals generated by FAs, provided that a suitable

correction is added to the �nal result. For n even

no correction is needed, whereas for any odd n, the

�nal result must add 2 mod 3. In the latter case, the

correction circuit realizes the following functions:

c�
0

= c0 � c1

c�
1

= c0 � c1

Note that it allows for only one representation of

0 | (00), to be produced at the output (i.e. it

can generate only three output combinations (c�
1
c�
0
) 2

f(00); (01); (10)g). Such a circuit must be added to

modify the outputs of any FA-based generator with odd

number n of inputs.

Clearly, the advantages of this generator are: (1)

basically only one cell is used | a FA, although with

some inputs complemented; and (2) highly regular

structure, as only adjacent cells are connected and there

are no long interconnection lines.

x11 x10 x9 x8 x7 x6

2    1    2

x5 x4 x3

1    2    1

x2 x1 x0

     weights
  - of     taken
     mod 33

- 16-bit vector

j2

FAFA

2    1    2 1    2    12 1    2    1

x14 x13 x12x15

FA FA

FAFA

FA

FA

FA FA

FA FA

X

j x

Stage 1

Stage 2

Stage 3

Stage 4

FA

FA

Stage 5

Stage 6

s 1 s 0

Figure 1: CSA-based 16-input generator mod 3 using

half-period.

3 GENERATORS MOD 3 BUILT USING

THRESHOLD CIRCUITS

The other general approach, which relies on using multi-

output threshold circuits T k, was proposed in [13]. For

any number of inputs k, a family of generators mod

3 can be built of multi-output threshold circuits T k

followed by some merging network. The most cost-

e�cient threshold circuits can be realized as sorting

networks | see [14], [15], [16] | which can be entirely

built using a comparator cell composed of a pair of 2-

input OR and AND gates. These new generators were

shown to be the least complex and the fastest gate-level

generators mod 3 currently known.

The logic structure of one of the basic cells

constructed using threshold circuits | M4 with four

inputs | is shown in Fig. 2, whereas a tree-structured

16-input generator mod 3 built using only this cell is

shown in Fig. 3. It is seen that such a generator also

enjoys a modular and highly regular structure composed

of gates with low fan-in which makes them attractive for

VLSI implementation.

M4 =

x0

x2

x1

x3

s0

s1

Figure 2: Cell M4 of the 4-input generator mod 3.

x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0x14 x13 x12x15

M4M4M4M4

M4M4

M4

s1 s0

Figure 3: Tree structure of the 16-input generator mod

3 using cell M4.

To convey some idea about relative complexity of a

generator built using M4, note that the cell M4 does



the same as two FAs: it reduces the number of bits

from four to two. Therefore, the generator from Fig. 3

seems to be potentially faster and perhaps less complex

than one from Fig. 1. At present, however, it is di�cult

to predict which VLSI implementation would actually

use less chip area and/or introduce less delay. A more

de�nitive conclusion regarding performance of these as

well as many potentially even more e�cient alternative

generators also presented in [13] cannot be drawn unless

some layouts for sample generators mod 3 are generated.

4 COMPARISON

As a vehicle for complexity comparison, we have selected

four various versions of 16-input generators mod 3,

whose layouts are evaluated in Table 1. All layouts were

generated using AVANT! tools (formerely COMPASS)

and CMOS ES2 0,7�m technology.

Table 1: Parameter comparison of various versions of

16-input generators mod 3.

Version Area[0�3mm2] Delay[ns]

Stand. Using FAs 41,70 18,12

cells Using M4 70,11 8,78

VHDL Using M4 74,49 19,32

Behavioral 69,08 22,43

We have made considered the following speci�cations:

� Schematic speci�cation using FAs built of standard

cells (as in Fig. 1);

� Schematic speci�cation using M4 built of standard

cells (as in Figures 2 and 3);

� VHDL speci�cation using M4 as the basic module

(the M4 cell is optimized by the logic synthesizer);

and

� VHDL behavioral speci�cation using periodicity of

j2j j3 (which requires less than 100 lines of VHDL

code).

The layouts of the �rst two versions were generated

using respectively FAs and M4 as basic modules.

The layouts of these two basic modules (each built

of standard cells), which were subsequently used to

generate layouts of the 16-input generators, are shown in

Figures 4 and 5, respectively. The two last speci�cations

have been synthesized with VHDL logic synthesizer of

AVANT! suite. The advantage of using such description

is that one has a portable version of the generator. In

exchange, the result is less e�cient, but an area-time

trade-o� can be obtained by tuning the synthesis tool

constraints.

 scale=0.456793

Figure 4: Layout of the FA used to build a generator.

 scale=0.360691

Figure 5: Layout of the module M4.



The VHDL behavioral description is made with three

modules: add8to4, add4to3, and add3to2.

Entity Add8to4 is

port ( E : in bit vector(7 downto 0);

D : out bit vector(3 downto 0));

end add8to4;

Architecture behavioral of add8to4 is

begin

process (E)

variable TMP : Bit Vector(3 downto 0);

begin

TMP := "0000";

for i in 0 to 7 loop

TMP := E(i)+TMP;

end loop;

D <<= TMP;

end process;

end behavioral;

Figure 6: VHDL behavioral description of add8to4 that

generates the sum of 8 bits.

The principal advantages of the VHDL behavioral

description are:

1. It can be easily used as a generic speci�cation

(independant of the number of inputs); and

2. It can trade-o� speed vs. area during synthesis

process by putting time constraints.

5 CONCLUSIONS

Four VLSI implementations of a 16-input generator

modulo 3 were considered. Included were two versions

built using standard cells: one entirely built of full-

adders while the other built as a tree of special 4-input

modules. The remaining two versions were derived on

the basis of the VHDL speci�cations. The comparison

of speed and area of varius layouts showed that the

generator built of full-adders consumes the least area.

On the other hand, the generator built as a tree of

special 4-input modules is twice as fast, although at the

cost of increasing the area by a factor of 1.7.

References

[1] G. G. Langdon, Jr. and C. K. Tang, "Concurrent

error detection for group look-ahead binary

adders," IBM J. Res. Develop., vol. 14, pp. 563{

573, Sep. 1970.

[2] A. Avi�zienis, "Arithmetic codes: Cost and

e�ectiveness studies for applications in digital

system design," IEEE Trans. Comput., vol. C-20,

pp. 1322{1331, Nov. 1971.

[3] T. J. Brosnan and N. R. Strader II, "Modular

error detection for bit-serial multiplication," IEEE

Trans. Comput., vol. C-37, pp. 1043{1052, Sep.

1988.

[4] V. Piuri and R. Stefanelli, "Concurrent error

detection in parallel multipliers and complex

arithmetic structures: Remarks on the use of the

3N code," Microproc. and Microprogr., vol. 31,

pp. 47{52, 1991.

[5] B. Grimal, "Synth�ese d'architectures auto-

testables d�edi�ees �a des applications de traitement

du signal," Ph. D. Thesis, Univ. de Rennes 1 |

ENSSAT, Dec. 1994 (in French).

[6] M. A. Soderstrand et al., (Eds), Residue Number

System Arithmetic: Modern Applications in

Digital Signal Processing, IEEE Press, NY, 1986.

[7] F. F. Sellers, Jr., M.-Y. Hsiao, and L. W.

Bearnson, Error Detecting Logic for Digital

Computers, McGraw-Hill, New York, 1968.

[8] J. F. Wakerly, Error Detecting Codes, Self-

Checking Circuits and Applications, North-

Holland, New York, 1978.

[9] G. Russell and I. L. Sayers, Advanced Simulation

and Test Methodologies for VLSI Design, Van

Nostrand Reinhold Int., London, 1989, Ch. 9.

[10] S. J. Piestrak, "Design of high-speed and

cost-e�ective self-testing checkers for low-cost

arithmetic codes," IEEE Trans. Comput., vol. C-

39, pp. 360{374, March 1990.

[11] S. J. Piestrak, "Design of residue generators and

multi-operand modular adders using carry-save

adders," in Proc. 10th Symp. Computer Arith.,

Grenoble, France, June 25{27, 1991, pp. 100{109.

[12] S. J. Piestrak, "Design of residue generators and

multioperand modular adders using carry-save

adders," IEEE Trans. Comput., vol. 43, pp. 68{

77, Jan. 1994.

[13] S. J. Piestrak, "Design of residue generators and

multioperand adders modulo-3 built of multi-

output threshold circuits," IEE Proc.-Comput.

Digit Tech., vol. 141, pp. 129{134, March 1994.

[14] D. E. Knuth, The Art of Computer Programming,

Vol. III, Sorting and Searching, 2nd Ed., Reading,

MA, Addison-Wesley, 1973, Ch. 5.

[15] S. J. Piestrak, "The minimal test set for sorting

networks and the use of sorting networks in self-

testing checkers for unordered codes," in Dig. Pap.

20th Int. Symp. on FTC, Newcastle upon Tyne,

UK, June 26{28, 1990, pp. 467{474.

[16] S. J. Piestrak, "The minimal test set for multi-

output threshold circuits implemented as sorting

networks," IEEE Trans. Comput., vol. 42, pp.

700{712, June 1993.


