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ABSTRACT

Subband decomposition is widely used in signal

processing applications including image and speech

compression. In this paper, we present Perfect Re-

construction (PR) polyphase �lter bank structures

in which the �lters adapt to the changing input con-

ditions. This leads to higher compression results

for images containing sharp edges such as �nger-

print images. The �ngerprint image compression

is an important problem due to the high amount

of �ngerprint images in databases [1]. For exam-

ple, the FBI database contains 30 million sets of

�ngerprints. We experimentally observed that our

method is successful for binary and gray-valued �n-

gerprint images.

1 PR Adaptive Polyphase Filter Banks

We propose an adaptive subband structure to de-

compose the �ngerprint images. The decomposed

images are then quantized using embedded zerotree

coding. The adaptive �lter banks can be visualized

as a polyphase structure in which one of the sub-

band components is predicted from the other sub-

band component. Consider the simple two band

PR polyphase decomposition structure shown in

Figure 2 in which the �lter P
1
can be either linear
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Figure 1: Polyphase analysis structure

or nonlinear [2],[3]. A good P
1
�lter would be the

one that can predict the samples of x
2
(n) as close
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Figure 2: Polyphase synthesis structure
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Figure 3: Adaptive structure analysis stage

as possible. This is equivalent to removing the cor-

related portions of the original signal to achieve

high compression. Perfect reconstruction is pos-

sible with the structure given in Fig. 2. In this

paper, the adaptive FIR �lters and adaptive order

statistics �lters are used in the �lter bank and im-

age coding algorithms are developed based on this

polyphase structure.

The adaptive �lter bank concept is inserted in

the prediction stage of the polyphase structure in

Fig. 2 and the adaptive polyphase structure is ob-

tained in Fig. 3. In this �gure, the signal x
2
(n) is

again predicted from x
1
(n). Furthermore, the pre-
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Figure 4: Adaptive structure synthesis stage



diction �lter adapts its coe�cients, ak 's, to min-

imize the variance of x
2
(n). In our experiments,

we use an LMS-type algorithm [4],[5] is used for

updating the equations.

Perfect reconstruction of this decomposition

scheme is possible. The parameters x
1
(n) and

x
2
(n) are passed to the decoder. Since x

2
(n) cor-

responds to the error signal in the adaptation algo-

rithm, the decoder can also update the �lter co-

e�cients with the same input (x
1
(n)) and error

(x
2
(n)) sequences as shown in Fig. 4.

The variance of x
2
(n) is minimized with the

adaptive algorithm. This means that the subband

coding gain GSBC is maximized by minimizing �2
x2

because:

GSBC =
�2x

(�xl�xh)
(1)

2 Adaptation Methods

The adaptive estimator for xh(n) is illustrated in

Fig. 3. The FIR adaptive �lter is obtained by

predicting x
2
(n) from x

1
(n) in a Linear Minimum

Mean Squared Error (LMMS) sense as follows:

x̂
2
(n) =

NX

k=�N

akx1(n� k) =
MX

k=�N

akx(2n� 2k)

(2)

where the �lter coe�cients ak 's are updated using

an LMS-type algorithm [4], and the subsignal xh is

given by

xh(n) = x
2
(n)� x̂

2
(n): (3)

In our method, we use the normalized LMS type

adaptation schemes for linear FIR �lters with the

following equations.

ŵ(n+ 1) = ŵ(n) + �
~xne(n)

k~xnk2
(4)

where ŵ(n) is the weight vector at time instant n,

~xn = [x
1
(n�N); x

1
(n�N + 1);

� � � ; x
1
(n+N � 1); x

1
(n +N)]T ;

(5)

and

e(n) = x
2
(n)� ~xT

n
(n)ŵ(n): (6)

In order to further improve the adaptation per-

formance, the step size parameter � is also adap-

tively chosen according to the variance of the input

~x
1
. Since this data is available both at the encoder

and at the decoder side, � can be updated by the

decoder with the same algorithm, and PR prop-

erty is preserved. In this case, the �lter coe�cient

update equation becomes

ŵ(n+ 1) = ŵ(n) + �(~xn)
~xne(n)

k~xnk2
(7)

.

The input elements ~x
1
and ~x

2
are selected from a

two dimensional region of support which consists of

polyphase components of an image matrix in hori-

zontal and vertical directions.

Another choice for P
1
is the adaptive Order

Statistics (OS) �lter [7]-[10]. Similar to the adap-

tive FIR case, the OS �lters can be adapted by

minimizing the subsignal y
2
using an adaptation

strategy. The rank ordering of the input elements

gives better coding results especially for the im-

ages that contain regions separated by edges. At

the edges, the median characteristics of the adap-

tive OS �lter eliminates the ringing e�ects. In our

simulations, we used a region of support with 9

elements. After rank ordering these elements, the

largest and the smallest values are ignored, and the

remaining rank ordered elements are fed to an LMS

adaptation block.

3 Compression of Gray Tone and Binary

Fingerprint Images

The compression of gray tone �ngerprint images is

performed by applying the adaptive subband de-

composition followed by an Embedded ZeroTree

(EZT) coder [11]. The level of decomposition is

determined by the size of the image. The OS

adaptive �lters gave slightly better results than

the FIR adaptive �lters for the �ngerprint images.

Five level decomposition is used for 256� 256 im-

ages. Experimental results show that our decom-

position scheme with the EZT coder outperforms

the traditional Embedded Zerotree Wavelet (EZW)

coder [11] in which a �xed wavelet decomposition is

performed �rst, and the coe�cients are compressed

by the EZT method.

The compression of binary �ngerprint images

need more elaboration. The straight application

of the adaptive subband decomposition followed by

the EZT coder increases the dynamic range of the

reconstructed image. To avoid this increase in the

range, a modi�ed decomposition and quantization

scheme to keep the decoded signal in the binary

range is developed.



The LMS algorithm usually produces non-integer

coe�cients, so the �ltered signal is not integer in

general. Furthermore, for the black regions of a �n-

gerprint image where most of the pixel values are

zero, the LMS �lter becomes unstable. As a re-

sult, the LMS algorithm is disabled in the regions

where the majority of the pixels are either black or

white, and the prediction value is set to the major-

ity of the pixel values. In the at regions (black or

white) of a �ngerprint image, the high band sub-

signal becomes zero. The prediction errors occur

in the transition regions which correspond to the

edge portions of the �ngerprint image. Therefore,

high pass signal xh(n) contains non-zero elements

only in transition regions. This shows that the low

and high band signals are completely decorrelated

by the adaptive subband decomposition scheme. It

is observed that the quantization of these subband

signals does not produce ringing e�ects in the de-

coded image. The only visible e�ect in the recon-

structed image is an occasional shift in the edge re-

gion which separates the black and white regions.

In our simulation studies, the subband signals of

the binary �ngerprint image are quantized by an

EZT type coder.

In the decoder side, the �lter bank switches be-

tween the adaptive and �xed prediction �lter banks

depending on the number of black or white pixels

in the region of support in ~xn. Finally, the re-

constructed image is quantized to binary with a

threshold.

4 Simulation Studies

In our simulation studies, we used 20 �ngerprint

images taken from the National Institute of Stan-

dards and Technology (NIST) database examples

for compression. All of the �ngerprint images used

are 8 bit 256x256 images. For the binary image

simulation studies, we quantized these images to

binary with an appropriate threshold level. Exam-

ples of these images are shown in Fig. 5.

In Fig. 6, the coded versions of a gray-tone �nger-

print image are shown. Our nonlinear adaptive al-

gorithm accomplished a compression ratio of 15.5:1

at PSNR = 30dB whereas the well known EZW

coder [11] had a compression ratio of 13.0:1 at the

same PSNR value. Furthermore, the ringing e�ects

present in the EZW coded image are eliminated

with the use of our method.

In Fig. 7, the binary �ngerprint test image is

compressed to two di�erent compression ratios.

The image at the left shows the coded image at

0.057 bpp and the one at the right shows the coded

image at 0.072 bpp. Both of the images preserve

the discriminating features of �ngerprint images

such as core and delta points. Our adaptive coding

algorithm preserves the visual quality of the orig-

inal �ngerprint images. The JBIG standard could

compress the same image only to 0.17 bpp.

Figure 5: Two �ngerprint images. Left: binary,

right: gray tone

Figure 6: Reconstructed images at CR=18:1(left)

and CR=15.5:1 (right).

We also compared the average, minimum, and

maximum compression ratios obtained by the adap-

tive FIR and OS LMS algorithms to the results

obtained by an EZW coder for 20 gray tone �nger-

print images. The results are presented in Table 1.

,

Figure 7: Reconstructed images at 0.057 bitpixel

(left) and 0.072 bit/pixel (right).



Max CR Min CR Ave CR

EZW 14.7 12.7 13.2

OS adapt. 15.8 15.0 15.4

FIR adapt. 15.4 14.7 15.0

Table 1: Experimental results for 20 gray scale �n-

gerprint images at PSNR = 30dB

Max CR Min CR Ave CR

Adapt. 15.5 12.2 13.8

JBIG 7.9 5.2 6.0

Table 2: Experimental results for 20 binary �nger-

print images at visually transparent quality.

We observed that the OS adaptation produces the

best compression results.

The coding results for the binary images are pre-

sented in Table 2 and compared with the JBIG

standard. Signi�cant improvements are obtained

with the use of the adaptive �lter bank.
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