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ABSTRACT
We expose a method for modeling handwriting thanks to
conic sections described by Cartesian equations under an
implicit form. The parameter estimation is processed by
an extended Kalman filter, taking as minimization
criterion, the squared orthogonal distance between a point
and the conic. The state equation is here constant, and the
observation is a system of two equations: the first one
characterizes the minimization of the criterion, and the
second one is a normalization constraint of the
parameters. The method provides a robust and invariant
estimation of parameters, and an unique solution allowing
the classification of modeled patterns.
We apply this method to the coding of handwritten digits.
A geometrical criterion allows to locate model changes.
For a large interval of the used thresholds, we observe a
great stability of the estimated parameters and of the
instants of model changes. The method is evaluated in
terms of accuracy, but equally by the data reduction rate,
compared to other modeling techniques.

1    INTRODUCTION

The digitized curve description has two objectives: to
decrease the mass of data and to allow processes of higher
level (recognition, diagnosis...). A set of points in the 2D
space representing handwriting can be described by one or
several representations estimated sufficient to envisage
ulterior processing. But choosing a technique of
representation consists in finding a trade-off between the
accuracy of the representation and the execution time
necessary for its processing. In fact, an accurate
representation is always computable but often not in a
satisfactory time. A representation by sections of lines can
be sufficient, and a method of segmentation based upon
the use of an extended Kalman filter followed by an
algorithm of detection of changes in drawing direction
was already realized [1]. In the framework of the help in
diagnosis of psychological illness in the child, the method
was applied on the segmentation of the Rey's Complex
Figure [2]. It provides on this geometrical drawing
essentially composed of sections of lines, an important
data reduction as well as a representation adapted to its
analysis, by giving relevant information for the
paediatrician [3]. Nevertheless, on the drawings

presenting strong curvatures, it is legitimate to think that
a representation by sections of lines becomes little
efficient. A method of segmentation by bows of circles
was thus realized [4] or [5], allowing to segment a
drawing in a succession of circle bows. The method uses a
technique of parameter estimation very close to the
preceding one, always with the help of an extended
Kalman filter. The objective of this paper is to generalize
this method to all types of conic, what will allow a more
accurate fitting of curves with less parameters.
In the next section, we develop the estimation technique
using an extended Kalman filter. In the third section, we
give some results in an application on real digits. The last
section presents our strategy of model selection.

2    CONIC FITTING PROBLEM

In this work, the problem consists in estimating the
parameters of a curve. We choose as general
representation model a Cartesian equation in the implicit
form [6]. The technique consists in estimating the vector
of parameters of the form described by a vector of state X.
The system of observation will be constituted of two
observations: the first one is linked to the form to
estimate, while the second one is a condition of parameter
normalization. In a general manner, the curve C is
described by a function Q: R2 à R supposed continuous
and having first and second derivatives in each point. We
define Z(Q) = {Z: Q(Z,X)=0}, the set of zeroes of Q by the
implicit function:

Q(Z,X)=0 (1)

that represents the general form of the modelled feature.
Generally, function Q is a non linear function between the
vector of parameters X and the point Z. The problem is to
formalize the recursive estimation of parameter X by a
Kalman filter. The state model is described by an equation
of state X characterizing the vector of parameters.
Consequently, we pose the following stationary state
equation:

X(t+1) = X(t) (2)

The introduction of a noise W(t) on the state would
consequently lead to consider a variation of parameters
[7], inducing a variation of the form, what would be



opposite to our objective of segmentation. Due to the fact
of the constancy of the state vector, calculations in each
step only correspond to the equations of updating the
Kalman filter.
A conic curve is generally represented by a 2nd degree
polynomial put under the next implicit form:

Q(Z,X) = Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (3)

with Z = (x, y)tr. The discriminant B2 - 4AC will be
negative if the conic is an ellipse, positive if it is an
hyperbole and null if the conic is a parabola. One shows
that Q(Z,X) is a function of the distance to center, from
the point Z to the conic Q(Z,X). If the point (x,y) is out of
the ellipse, the value of Q(Z,X) will be negative, and
positive in the opposite case. The fitting of a general
conic, from a set of T points, can be realized by
minimizing the following quadratic sum:

Q Z t X t
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The minimization of a quadratic error function of this
distance would present the following disadvantage: a
point would differently contribute to the estimation of
parameters according to its position of the conic, what is
easily understood if one considers the case of an ellipse.
We propose to use an orthogonal distance to the conic, but
the expression of this distance is complicated and
necessitate a step of iterative optimization [8]. We have

developed an approximation of the square dt
2 of this

distance, based on the limited development of the
quadratic error between an estimated measure and the true
measure, pondered by the covariance of the measure
noise. To minimise the orthogonal distance, the
minimisation criterion must satisfy:
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We define the norm dt
2 by the following scalar product:
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The factor L(t)-1 means that the distance is independent of

the measure noise. Let us note L-1 = StrS. We can show

that dt
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where v(t) is defined by:
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and where VQ(t) is a noise due to the quadratic term. The
form of this approximation allows it to be integrated in
the Kalman filter.
Fitting the conic consists in minimizing eq.(7), by
writing:
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With the purpose to avoid the trivial solution, all
parameters null, or a proportional solution, the vector X of
parameters is rendered unique with the help of a
constraint. We therefore define a vectorial observation
equation, and the following system has to be satisfied:
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Several published algorithms differ only by the form of
the constraint applied on parameters [9]. For necessary
reasons of invariance to geometrical transformations in
Pattern Recognition, we use the constraint

YN(t) = N[X(t)] = A2 + ½ B2 + C2 -1 = 0

proposed by Bookstein [10]. The chosen constraint YN  is
non linear according to parameters of vector X ; it is
linearized under the hypothesis of weak variation of
parameters between two successive instants. The second
component of the observation may is written by:
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where VN(t) is also a noise due to the quadratic term.
The initialization of parameters is based upon a least
squares method applied on the 5 first points of the
drawing. The obtained values are normalized by (YN+1)-½,
giving the fist vector of parameters.

3    APPLICATION TO THE SEGMENTATION OF
REAL DIGITS

The segmentation by conic sections necessitates a detector
of end of model. The realized detector is based on an
angular deviation between the model and the acquired
point. However, due to the fact of local perturbations of
the layout, the crossing of this threshold has to be
confirmed by a second test. This test is based upon a
crossing of the threshold on a window of observation fixed
to three samples. We illustrate results of segmentation on
handwritten figures, on-line acquired thanks to a digitizer.
In figures 1 and 2, we show a figure six written by an
adult from the top to the bottom. This figure is composed
of 150 points. We overlap on this figure the result of the
segmentation by conic sections for two values of the
threshold αS (0,20 and 0,30 radians). Points of model
changes are represented by segments of lines at each end
of conic section. There is no important difference between



the two figures, except the nature of the fourth section:
with the threshold αS =0,20, it concerns a section of
hyperbole, while with the threshold αS =0,30, we find an
ellipse section. We give in tables 1 and 2, the position of
bow changes, the value of each bow parameter, and the
type of conic.

Pos. A B C D E F Type
26  0.457  -0.295 0.864 -4952  -3488  20893914 Ellipse
52  0.739  0.808 0.356  -10324  -6604  37645955 Ellipse
98  0.893  0.176 0.431  -10305  -4557  36299681 Ellipse
123  0.015  1.101 0.627  -4406  -12665  40319321 Hyperb
150  0.564  0.677 0.671  -8991  -9608  45190671 Ellipse

Table 1: segmentation of a 6 with αS= 0.2

Figure1: segmentation of a 6 with αS = 0.2

Pos. A B C D E F Type
26  0.457  -0.295 0.864  -4952  -3488 20893914 Ellipse
52  0.739  0.808 0.356  -10324  -6604 37645955 Ellipse
101  0.893  0.176 0.431  -10305  -4557 36299680 Ellipse
125  0.359  0.602 0.830  -6282  -11496 43279595 Ellipse
150  0.536  0.630 0.716  -8536  -9796 44613413 Ellipse

Table 2: segmentation of a 6 with αS = 0.3

Figure 2: segmentation of a 6 with αS= 0.3

We can observe that in areas of weak curvature, changes
of sections append on the same points, despite the strong
differences of threshold values, and obtained parameters
are therefore the same. In regions of strong curvatures, the
variation of the value of the threshold delays the change of
segment of a maximum of three points without modifying
in a perceptible manner the value of parameters, except if
a change of type of conic appears. Note that these changes
of type of conic do not happen in a very large interval of
variation of the threshold (on this example, only from
αS=0,29). Thus, we observe, on the totality of the
analyzed drawings, a great stability of parameters and the
obtained segmentation. The segmentation depends on the

wished precision but we note a large robustness of
thresholds. The same thresholds have been retained for all
the tested drawings.

4    MODEL SELECTION

The quality of the segmentation depends on a trade-off
between the obtained reduction rate and the precision. An
aspect of the quality of our method of segmentation can be
evaluated by the reduction rate. This rate is computed
from the ratio between the number of elements not
memorized by the algorithm and the number of initial
elements represented by the number of points given by the
digitizer.
Files of drawings are constituted by the points acquired
with the digitizer. Since each point is known by its
abscissa and its ordinate, n points are described by 2n
pieces of information. We here give the number of items
retained by different segmentation algorithms :
- for a linear modeling (for example, [1]), the first point
and the point of section change. For each segment, only
one point must be retained, that is to say 2 values. The
first segment needs two supplementary values for the start
point. Finally, for l segments, the drawing is described by
(2l+2) values.
- for a circular modeling [4], we also have the center of
the circle, then the drawing will be described using
(4ci+2) values for ci bows of circles.
- In the same manner, we obtain (8co+2) values to retain
for c conic sections.
In the case of a description using several models, the
reduction rate may be written by the following ratio :

R
l c c

n
i o=

+ + +2 4 8 2

2

With the maximal precision, the description of 5 points
gives the same ratio R by 4 successive linear segments or
by an unique conic section. From the 6th point, a
comparison becomes possible between these two models.
For a same accuracy, a description by conic sections gives
a data reduction Rco better than Rl obtained with linear
segments if the number co is smaller than l/4 segments.
The model  Mi , i = l, ci, co will be chosen such than
Mi=Arg min (4l, 2ci, co).
On the treated examples, we have computed the factor Ri

for each type i of model. It varies between 6% and 20%
for the linear modeling and between 7 and 18% for the
conic model.
From this fact, we propose an on line segmentation
criterion giving the best model to adopt in each point by:

K Ri i i= + −λ λ ε( )1

where λ is a trade-off factor between the data reduction
rate and the segmentation quality.
This criterion of segmentation can be used as detector of
model end and the proposed modeling can be on-line

4th section

5th section

1st section

2nd section

3rd section



processed  at the same time than other circular or linear
filters.  The criterion has for objective to maximize the
length of the model live while minimizing the modeling
error since the reduction rate depends on the duration of
validity of the running model. In figures 3 and 4, we give
results of segmentation by the linear model compared to
the conic model on an example of numeral 2.
In the case of the modeling by conics (figure 3, with
αS=0,25), the algorithm here retained co= 4 conic sections,
that is to say 34 items of information to retain. We had to
decrease thresholds in the case of the linear modeling
until to obtain the same information to memorize, 34, that
is to say 16 line segments (some segments are then very
small). The result is visible in figure 4 and does not reach
the same precision.

Fig. 3.a: α =15° Fig. 3.b: α=6°
Figure 3: linear modeling for two values of thresholds

Figure 4: modeling by conics, aS = 0,29

However, the best representation depends on the
manuscript layout type, for example of the type of figure.
The choice of a model among the three possible ones is
already an element of classification. For example, with
drawings presenting large portions to very weak
curvature, the length of initialization does not allow the
conics model to converge, but they are these cases where
the linear model becomes very good, such as on numerals
1, 4 or 7. But generally, two or three models must be used
for the best modeling in the sense of the criterion Ki.
To compute the error εi in Ki, we can adopt the same
calculation of a sum of squared orthogonal distances, for
each point of the drawing, multiplied by the distance from
the previous point, to give the same weight to all points,
whatever the speed of the drawing.
So, we propose a strategy of segmentation by the three
models in parallel.  This strategy will use the principle of
the Minimum Description Length (MDL, [11]) of
Rissanen, or more precisely the Minimum Message
Length principle (MML, [12],[13]), because of the little
amount of data, to decide the best model in each instant of
changes. The initial priority is given to the linear model.

Conclusion

We have exposed how curves can be  modeled by sections
of conics thanks to an extended Kalman filter.  Curves are
described by equations under an implicit form providing a
first equation of observations, the second one being a
condition of normalization that leads to a unique solution
allowing classification and providing an invariant
estimation by geometrical transformations. The conic
estimation integrates an approximation of the orthogonal
distance between a point of the space and the conic and
gives a robust parameter estimation allowing the coding
of handwritten drawings. For a large  interval of the used
thresholds, we observe a great stability of the parameters
and the instants of changes.  The modeling is evaluated in
terms of accuracy, but equally by the obtained rate of data
reduction. The results on real drawings show that the best
compromise is in the use of several kinds of models and a
segmentation criterion based upon this trade-off.
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