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Abstract - In this paper, we study the properties of a new kind of
complex domain artificial neural networks called complex
adaptive spline neural networks (CASNN), which are able to
adapt their activation functions by varying the control points of a
Catmull-Rom cubic spline. This new kind of neural network can
be implemented as a very simple structure being able to improve
the generalization capabilities using few training epochs. Due to
its low architectural complexity this network can be used to cope
with several nonlinear DSP problem at high throughput rate.

1. Introduction
ECENTLY in the neural network community, a new interest
in adaptive activation functions has arisen. In fact, such a
strategy seems to provide better fitting properties with

respect to classical architectures with sigmoidal neurons.

The simplest solution we can imagine consists in involving gain a
and slope b of the sigmoid a e ebx bx( ) ( )1 1− +− −  in the learning

process [1]. A different approach is based on the use of polynomial
functions [2], which allow to reduce the size of the network and, in
particular, the connection complexity; in fact, the digital
implementation of the activation function through a LUT (look-up-
table) keeps the overall complexity under control. Drawbacks with
this solution arise with the non-boundedness of the function (non-
squashing) and with the adaptation of the coefficients in the
learning phase. In [3] the direct adaptation of the LUT coefficients
is proposed: this time the problems are a difficult learning process
due to the large number of free parameters and the lack of
smoothness of the neuron’s output. These are also the main reasons
for the introduction of Hermite polynomials as substitutes for the so
called supersmoother in the Projection Pursuit Learning approach
of Hwang et al. [4].

The solution discussed in this paper makes use of spline based
activation functions whose shape can be modified through some
control points. In fact, our main goal is to demonstrate  that an
intelligent use of the activation function can reduce hardware
complexity [6-7], while, at the same time, improving generalization
ability.

The main advantages of this innovative structure, very useful for
nonlinear adaptive signal processing, are: 1) the training sequence
may be shorter than that required by the classical MLP; 2) the
architecture is general and, unlike others approaches, it does not
require a specific design; 3) the low hardware complexity (low
overhead with respect to a simple adaptive linear combiner) makes
it suitable for high speed data transmissions using a DSP device.

So, after seeing cubic splines theory and discussing we presents the
backpropagation-like learning algorithm for the CASNN. In Section
3, we’ll expose the results of a simulation on complex signal
processing problems.

2. The Adaptive Spline Neural Networks
Regularization theory offers a way to choose a compromise
between data fitting and smoothness, through a regularizing term.
According to [5], the final aspect of the approximating function is
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where the symbol xij indicates the j-th component of the i-th
component of the input vector xi.

An important extension of the previous function involves a change
in the coordinates system for the space; as reported in [5], the
choice of a proper point of view can be important when
representing a multivariate function as the sum of a number of
functions equal to the dimension of the input space. Calling wj,
j=1,...,n, the vectors which determine the axis of the new system
and αij  the new centers in such a system, we can write
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inverting the order of summation of  equation (1). The equation (2)
is the starting point of our considerations.

As developed in [18] the idea of the adaptive spline based neural
network (ASNN) consists in realizing a neuron with a more
complex activation function than the sigmoid, able to reproduce the
shape of a whole cubic spline along the directions specified by wj,
j=1,...,n; :
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Then f(x) can be written as:
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Now µj, and the components of wj, for all the indexes j, can be
found by backpropagation, thus solving the problem of the optimal
set of the parameters µj and of the ideal system of coordinates
(although we can get trapped in local minima).

As we have previously anticipated, the goal is to give a global
approximation of the curve drawn by the functions ϕj, j=1,...,n,
using a structure as tractable as possible. In equation (3) we find a
spline with N+1 tracts: each of them is described by a different
combination of the coefficients ci, because of the change in the sign
of the kernels at αij. We have chosen to represent the activation
functions through the concatenation of even more local spline basis
functions, controlled by only four coefficients. As we want to keep
the cubic characteristic, we have used a Catmull-Rom cubic spline
[8]. Using this type of spline we could exactly reproduce function
(3), but, of course, this is not the cheapest solution so we’ll take a
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different approach. Referring to Figure 1, the i-th tract is expressed
as
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where u∈[0,1] and Q=(qx ,qy ). Such a spline interpolates the points
Qi+1 (u=0) and Qi+2 (u=1) and has a continuous first derivative,
which is useful for the backpropagation-like learning algorithm.
The second derivative is not continuous only at the knots. In
general, equation (4) represents a curve: to obtain a function we
have ordered the x-coordinates according to the rule qx,i < qx,i+1 <
qx,i+2 < qx,i+3.

qx,0 qx,1 qx,2 qx,3 qx,i qx,i+1 qx,i+2 qx,i+3

..... .....

qx,P-3 qx,P-2 qx,P-1 qx,P

y

i-th tract

x

Figure 1. Control points of the Catmull-Rom spline based
activation function: along the x-axis there is a fixed step ∆∆x.
The i-th tract starts with qx,i and ends with qx,i+3, but the
controlled interval is only between qx,i+1 and qx,i+2.

To find the value of the local parameter u, we have to solve the
equation Fx,i(u)=x0, where x0 is the activation of the neuron: this is
a third degree equation, whose solution can make the numerical
burden of the learning algorithm heavier.

The easiest alternative consists in setting the control points
uniformly spaced along the x-axis (∆x is the step): this choice
allows to reduce the third degree polynomial Fx,i(u)  to a first
degree polynomial and the equation for u becomes linear.

F u u x qx i x i, ,( ) = + +∆ 1  . (5)

Now we can calculate the output of the neuron by Fy,i(u). There is
another reason not to make the x-coordinates of the control points
adaptive: in fact, as we have pointed out in the introduction, a too
large number of free parameters is the main cause for the
overfitting of the training samples: so, if we use many tracts in
building the activation function and let them move freely, the
neural model will fit also the noise. Then the fixed parameter ∆x
can be one of the key tool for smoothness control.

As we have decided to adapt only the y-coordinates of the spline
knots, they must be initialized them before starting the
backpropagation-style learning: to this aim, we take, along the x-
axis, P+1 uniformly spaced samples from a sigmoid or from
another function assuring universal approximation capability that’s
why we use sometimes the acronym GS, standing for Generalized
Sigmoid. Outside the sampling interval the neuron’s output will be
held constant at the values qy,1, for the negative x-coordinate, and
qy,P-1 for the positive x. In the following, for the sake of simplicity,
we’ll indicate the y coordinates of the control points without the
index y.

3. The Complex Domain ASNN and Learning Algorithm
The advantage of using complex-valued NNs instead of a real-
valued NN counterpart fed with a pair of real values is well know
[9-10]. In complex-valued neural networks one of the main problem
to deal with, is the complex domain activation function, whose
most suitable features have been suggested in [11]. Let F(S) be the
complex activation function with S∈C defined as the complex
linear combiner output; the main constraints that F(S) should
satisfy are:

1)  F(S) should be non linear and bounded;

2)  in order to derive the backpropagation algorithm the partial
derivatives of F(S) should exist and be bounded;

3)  because of the Liouville’s theorem F(S) should not be an
analytic function.

According to the previous properties, one possible choice, proposed
in [12-13], consists on the superposition of real and imaginary
activation functions F(S)=fRe(Re[S])+jf Im(Im[S]); where the
functions fRe(•) and fIm(•), can be simple real-valued sigmoids or
more sophisticated adaptive functions.

Using a formalism similar to the one introduced in Widrow and
Lehr in [14], and following a development similar to [9], [12-13],
for the synaptic weights, the learning algorithm is now extended to
the spline’s control points.

Considering M total layers and indicating each of them with the
index l, l=1,...,M, we can find the span ak and the local variable uk

by
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where the symbol  ⋅  is the floor operator. We find for each

neuron j the local tract aj which sj belongs to, and the local
coordinate uj. These expressions lead to neuron structure reported
in Figure 2.

Complex Backpropagation Learning Algorithm

As in [9], [12-13], for the synaptic weights, the learning algorithm
is now extended to the spline’s control points.
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with 0 ≤ k ≤ Nl and 0 ≤ j ≤ Nl-1.

The adaptation of the control points is ruled by
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with the patch index m=0, ..., 3. The adaptation rates are µw for the
connection weights and biases and µq for the control points. The
control point with index 0, 1, (N-1) and N are fixed.

4. Experimental Results: non linear QAM channel
equalization
The block diagram of the radio link used in our experiments is
depicted in Figure 4. The complex input data sequence D(k),
represents the points of the QAM constellation. The function g(t)
represents the modulator filter impulse response: in the simulation
we use  a  square-root  of  a  raised-cosine  having  a  roll-off
factor α  equal to  0.5, and the over-sampling factor M is chosen
equal to 3. The g(t) filter length is equal to 5M taps.
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Figure 4. Block diagram of the digital radio link using a
complex ASNN as nonlinear equalizer.

The model for the HPA, described in [17], is characterized by the
expression:
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The input-output HPA (memoryless) response is described by the
AM-AM response, represented by the module, and the AM-PM
response represented by the phase. This description assumes, for
convenience, that the maximum possible HPA input power
Win=|u(t)|2 is equal to 1W, and the maximum shift is Φ

0 6= π ,

which are typical values [16].

In the simulations the transmission of 16-QAM signals are
considered. The maximum input power to the HPA WinMAX is very
close to the saturation point, and fixed equal to -1 dB.

Three complex-valued equalizers have been tested: complex-valued
linear combiner (A15_1); complex-value standard multilayer neural
network with one hidden layer composed by 10 sigmoidal neurons
and linear output (N15_10_1); CASNN composed by only one
complex GS neuron (S15_1).

The training set consists of 6144 (2048xM) input samples, v(t)+n(t)
in the scheme of Figure 4, corresponding to 2048 target QAM
symbols. Since the neural network output are the QAM complex
constellation points, the network performs also the down-sampling
conversion. For each epoch, a different realization of white zero-
mean Gaussian noise n(t) is added, to obtain a S/N equal to 20 dB.

During the learning phase, the S15_1 and A15_1 networks are
trained for 100 epochs, while, in order to reach a suitable
convergence, the standard MLP N15_10_1 is trained for 104

epochs. Both adaptation rates µq and µw  for the S15_1 are chosen to
be equal to 0.001; the same value is used for the MLP N15_10_1,
while for the adaptive linear combiner A15_1 µw is equal to
0.0001.
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Figure 5. The symbols error probability (Pe) plotted vs. signal
to noise ratio (S/N) at the input of the receiver using various
equalization schemes.

Several tests using different networks initialization weights have
been carried out. In order to evaluate in a realistic way the radio
link performances, the symbol error probability (Pe) is computed.
Figure 5 reports the Pe values vs. the S/N, both expressed in dB.
From this figure we can observe that the proposed approach leads
to significant improvements not only with respect to the classical
linear adaptive filter, but also with respect to the already known
sigmoid MLP based equalization technique.

5. Conclusions
Complex domain neural network architecture, based on adaptive
Catmul-Rom splines activation function has been proposed.
Derived from the standard backpropagation the learning algorithm
for the new CASNNs has been derived.

Experimental results in QAM equalization problem, demonstrate
the advantage in CASSN, since the network reduces to a single
complex neuron. Moreover, the reduced complexity is responsible
for the shorter adaptation phase in terms of training epochs, as
experimentally observed. Comparing our technique with classical
linear approaches, we can notice that there is a low implementation
overhead with respect to the adaptive linear filter, but with a
significant improvement in the performance, both in terms of MSE
and symbol error probability.
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Figure 2. The complex-valued generalized sigmoid (GS) neuron structure (the structure of the imaginary part is omitted
because it is identical to that of the real part).


