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ABSTRACT

The aim of this paper is to present a new uni�ed ap-
proach to real- and complex-valued Principal Compo-
nent Extractor with laterally-connected neural nets as
the APEX (Kung-Diamantaras) and the cAPEX (Chen-
Hou) based on an optimization theory specialized for
such architectures. We �rstly propose an optimization
formulation of the problem and study how to recursively
determine solutions by means of gradient-based algo-
rithms. In this way we �nd a class of learning rules called
 -cAPEX containing, as a special case, a cAPEX-like
one. Through simulations we �nally compare the con-
vergence speed and numerical precision at equilibrium
of cAPEX and some members of  -cAPEX.

1 INTRODUCTION

Diamantaras and Kung realized a Principal Compo-
nent analyzer by training a laterally-connected lin-
ear neural network described by the neural scheme:
y = WTx + LT y by running a proper unsupervised
learning rule called Adaptive Principal component EX-
tractor (APEX) [5]. The input vector x 2 Rp, the
output vector y 2 Rm (with m � p, arbitrarily
�xed), the direct-connection p�m weight-matrixW and
the lateral-connection strictly-upper triangular m � m

weight-matrix L are intended to be evaluated at the
same temporal instant. The columns of W and L are
named in the following way:

W = [w1 w2 � � � wm] ; L = [0 `2 � � � `m] : (1)

Authors proved [5] that under some conditions, in the
mean sense: 1) column-vectors of the matrixW asymp-
totically converges to the �rst m principal eigenvectors
of the covariance matrix of x, and 2) L asymptotically
vanishes. Here we denote such results as Diamantaras-

Kung's Results (DKR).
Later on, Chen and Hou [1] extended APEX algorithm
to perform PCA of complex-valued random signals.
Their architecture-descriptive equation can be rewritten
as follows:

y = WHx+ LHy ; (2)
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with the same symbology and conventions as above
and where superscript H denotes Hermitian conjugation.
Their original learning rule for the weight-matrixW can
be recast as:

�W = �[X ~Y � �W ~Y ~Y �] ; (3)

and the learning rule for the weight-matrix L as:

�L = ��SUT[Y ~Y �]� �L~Y ~Y � ; (4)

where superscript � denotes complex conjugation, � is a
positive learning rate, X is a p � m matrix, Y and ~Y
are m �m matrices de�ned by:

X = [x x � � � x| {z }
m

] ; Y = [y y � � � y| {z }
m

] ; (5)

~Y = diag(y1; y2; : : : ; ym) ; (6)

and the operator SUT[�] returns the strictly-upper trian-
gular part of its square matrix argument.
Chen and Hou proved experimentally [1] that DKR re-
sults hold also for their cAPEX algorithm.
In this paper we present a uni�ed approach to real- and
complex-weighted laterally-connected PCA neural nets,
by means of an optimization theory specialized for the
architecture (2). This theory was developed primarily
for the complex-case which leads to a cAPEX-like algo-
rithm, but in the real case it explains also an APEX-like
one. Moreover, our theory yields a class of PCA algo-
rithms that we called  {cAPEX that show a variety
of interesting behaviors. Through simulations here we
compare the convergence speed and numerical precision
at equilibrium of cAPEX and some members of our class
of learning rules.
To develop the theory we need some preliminary math-
ematical results concerning optimization in the complex
�eld. Such argument is discussed with some details in
Section 2.

2 OPTIMIZATION IN Cn

Here we deal with the problem of maximizing or mini-
mizing a real-valued function of complex-valued vectors.



Said f the function to be maximized/minimized with re-
spect to a generic complex-valued vector argument w, a
method to look iteratively for the optimum w? is that
based on the Gradient Steepest Ascent/Descent tech-
nique, that consists in assuming variations �w propor-
tional to the gradient @f

@w
. Since w is complex-valued,

we need to specify what @f

@w
means. Here we assume, by

de�nition:
@

@w
=

@

@u
+ i

@

@v
; (7)

where u + iv = w and `i' denotes the imaginary unit.
It is easy to prove that this choice ensures the expected
variation �f at any iteration, if the adaptation rate is
small enough.
In this Section we try to evaluate gradients of real-valued
functions de�ned as:

J =

mX
k=1

Ek =

mX
k=1

jykj
2 ; (8)

where jzj denotes the modulus of the complex number
z, and:

yk = wH
k x+ `Hk y ; (9)

for k = 1; : : : ;m. Vectors wk and `k belong to Cp (p >
m), and are independent parameters. Vector x 2 Cp

is variable and independent. It is important to specify
that vectors `k are such that:

`kh = 0 for h � k ; (10)

thus, for instance, `1 = [0 0 � � � 0 0]T , `2 =
[`21 0 � � � 0 0]T , `3 = [`31 `32 � � � 0 0]T , etc.
Let us now evaluate separately the gradients of functions
Ek with respect the variables w and `. Since we need
expressions of Ek in terms of real and imaginary parts
of w and `, we must take out these components. To this
aim, name both parts of all vectors as follows:

y = �1 + i�2 ; x = �1 + i�2 ;

w = u+ iv ; ` = r + is :

Firstly, rewrite each Ek in the following way:

Ek = jykj
2 = (uT �1 + vT �2 + rT�1 + sT �2)

2 +

+ (uT �2 � vT �1 + rT�2 � sT �1)
2 ;

where index k has been neglected for the sake of notation
conciseness.
Because of the property (10), parts �1 and �2 of yk do
not depend on wk, but only on wh for h < k, therefore
gradients @Ek

@u
and @Ek

@v
can be easily calculated as:

@Ek

@u
= 2(uT �1 + vT �2 + rT�1 + sT�2)�1 +

+ 2(uT �2 � vT �1 + rT�2 � sT�1)�2 ;

@Ek

@v
= 2(uT �1 + vT �2 + rT�1 + sT�2)�2 +

� 2(uT �2 � vT �1 + rT�2 � sT�1)�1 ;

and �nally:

@J

@wk
=
@jykj

2

@uk
+ i

@jykj
2

@vk
= 2xy�k ; (11)

where superscript � denotes complex conjugation again.
Because of the structure of equation (9), calculating @J

@`k
is a bit more di�cult than the preceding operation. Let
us start by observing that jykj

2 = �21(k)+�
2
2(k), therefore,

for instance:

@J

@rk
= 2�1(k)

@�1(k)

@rk
+ 2�2(k)

@�2(k)

@rk
: (12)

With some mathematical work, by applying more than
once rule (9), it is not di�cult to prove that:

@�1(k)

@rk
= �

[k]
1 ;

@�2(k)

@rk
= �

[k]
2 ;

@�1(k)

@sk
= �

[k]
2 ;

@�2(k)

@sk
= ��

[k]
1 ;

where �
[k]

h = [�h(1) �h(2) � � � �h(k�1) 0 � � �0]T for k > 1,

and �
[1]

h
= [0 � � � 0]T . Hence, we �nd:

@J

@`k
= 2y[k]y�k ; (13)

where y[k] = [y1 y2 � � � yk�1 0 � � � 0]T .
Suppose now the target is to estimate gradients of func-
tions E and C de�ned as follows:

E =
X
k

Ek +
X
k

�k(w
H
k wk � 1) ; (14)

C =
X
k

Ek +
X
k

 k(`
H
k `k) ; (15)

where �k and  k are generic multipliers. Clearly
@(wH

k
wk)

@wk
= 2wk, thus:

@E

@wk
=
@Ek

@wk
+ 2�kwk ;

@C

@`k
=
@Ek

@`k
+ 2 k`k : (16)

Notice that E has its extreme value where wH
k wk = 1,

hence from the �rst equation of (16) we �nd the opti-
mum wk satis�es:

wH
k

@E

@wk
= wH

k

@Ek

@wk
+ 2�k = 0 ; (17)

therefore the optimum �k is �k = �1
2
wH
k
@Ek
@wk

, and:

@E

@wk
=
@Ek

@wk
�

�
wH
k

@Ek

@wk

�
wk : (18)

3 THE  {cAPEX CLASS

In the following Subsection a new class of cAPEX{like
algorithms is presented. Then di�erences and similari-
ties between our new algorithms and other ones will be
discussed.



3.1 cAPEX{like Algorithms Based on an Opti-

mization Formulation

A PCA transformation is such that the transformed
signals z = WHx are characterized by maximum vari-
ance. Furthermore, from the formal de�nition of PCA
we know that, at the equilibrium, any unique PCA vec-
tor wi must be orthogonal with respect to each other
and endowed with an unitary norm.
These targets can be thought as separated objectives
to be attained by means of a laterally-connected neural
topology. More formally we can state the following:
(Proposition.) It is possible to de�ne a pair (E;C) of
objective functions whose gradient-based extremization

process yields a class of PCA algorithms containing, as

a special case, a cAPEX-like. 2

Functions E and C can be properly �xed by examining
the structure of a generic squared output signal yk from
(9). By a simple calculus we obtain:

jykj
2 = jwH

k xj
2 + j`Hk yj

2 + Rk : (19)

The �rst term at the right hand contains in the mean
the power of the transformed signal zk = wH

k x, while
the second term at the right hand of the above equation
contains in the mean a linear combination of the cross-
correlations of the outputs, in fact it holds true that
E[j`tkyj

2] = `Hk E[yy
H ]`k. By de�nition of PCA, the �rst

one has to be maximized under the constraint wH
k wk = 1

[3, 6], while the second one must be vanished.
Here we propose to use the direct-connections adapta-
tion to maximize the power of the transformed signal
by maximizing the objective function (14) with respect
to W only. In that equation �k are the so-called La-
grange multipliers. To adapt each wk, the Gradient
Steepest Ascent (GSA) algorithm is used, that means
�wk = +� @E

@wk
. From the above Section we know that:

@E

@wk
= 2(x� zwk)y

�

k ;

therefore the learning rule for W is:

�W = 2�(X ~Y � �W ~Z ~Y �) ; (20)

where ~Z is de�ned as:

~Z = diag(z1; z2; : : : ; zm) ;

and � is a positive learning rate. (Note that ~Y H = ~Y �.)
Besides, we choose to adapt the lateral-connection

weight-matrix L only, in order to minimize a cost func-
tion de�ned as in (15) where a set of m Lagrange
multipliers  k has been introduced for the constraints
k`kk

2 = 0 (that have to be reached at the equilibrium
to preserve the second DKR result) and to add to the
system a number of degree of freedom.
This second objective functionC can be minimized, with
respect to the variable matrix L, by means of a Gradient

Steepest Descent (GSD) method �`k = �� @C
@`k

, where,
from Section 2:

@C

@`k
= 2y[k]y�k + 2 k`k ;

obtaining the following new learning rule:

�L = �2�SUT[Y ~Y �]� 2�L~	 ; (21)

which provides minimization of the cross-correlations
between the network's output signals. In the above for-
mula it was used a matrix:

~	 = diag( 1;  2; : : : ;  m) ;

and re-used de�nitions (5)-(6).
Now there are all the elements to propose the following
de�nition, relative to the class of algorithms represented
by the above new neural learning rules:
(De�nition.) The family of learning rules described by

equations (20) and (21) is called the  �cAPEX Prin-

cipal Component analyzer class. The special element in

this family with ~	 = ~Y ~Y � is called jyj2{cAPEX. 2

Notice that jyj2{cAPEX is not the same algorithm as
the original cAPEX, but as L ! 0 then ~Z ! ~Y , thus
these algorithms asymptotically behave in the same way,
and we call it cAPEX-like.
It is also important to notice that, apart from further
stability considerations, the choice of the multiplying
functions  k(t) is free, because there are no theoretical

reasons to force the  k functions to assume any partic-

ular value. In fact, we can adopt as  k any suitable
arbitrarily chosen function that guarantees the asymp-
totic stability of the global learning process.

3.2 Discussion

In practice, in our experiments we have examined the
following three cases: 1)all the  k(t) are chosen null; 2)
 k(t) are any arbitrarily chosen non-null constant value
� k; 3)the  k(t) are assumed as particular non-constant
functions of the unique variables yk(t).
Roughly speaking, we can identify the special Principal

Component extractor obtained by vanishing free func-
tions  k(t) as the 0{cAPEX algorithm. whose descrip-
tive equations are:

�W = 2�[X ~Y � �W ~Z ~Y �] ; (22)

�L = �2�SUT[Y~Y�] : (23)

In a computational complexity point of view, this case
is the most interesting one since it requires a smaller
amount of operations than the original cAPEX. The
above rule recalls the linearized Rubner-Tavan's model

(see [5, 7]) which the 0{cAPEX counterpart asymptoti-
cally behaves like.
For the second case, through simulations we gathered
that the qualitative choice 0 < � k � jykj

2 is often pos-
sible and very useful, since we observed that the term
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Figure 1: Convergence speed comparison.

jykj
2 in each of the (4) is too much large and can also

lead the algorithm very far from the right solution.

The same observation as above applies also when non-
constant non-null functions  k are used: each  k(yk)
should be a positive function that increases less than
jykj

2 for large values of jykj. For instance, we found good
results with  k = jykj. Other suitable choices suggested
by robust statistics [2] are of course possible.

Finally, it is interesting to notice that also MCA (Minor
Component Analysis, [8]) can be performed by means
of the same type of algorithms by simply changing the
sign of gradient in (20).

4 EXPERIMENTAL RESULTS

To assess the above theoretical analysis and compare
algorithms' performances, simulation results are shown,
as obtained by using standard cAPEX and our new al-
gorithms belonging to the  -cAPEX class.

Such PCA algorithms have been run with a network
input signal x = Qs, where Q is a p � p unitary ma-
trix (QHQ = I) randomly generated, and s contains
p mutually uncorrelated zero-mean random signals si
with di�erent powers �2i = E[s2i ]. Signals si are placed
in s so that their powers are decreasingly ordered, i.e.
�2i > �2j if i < j. This implies that the �rst m Prin-
cipal Components of x (with m < p) are the �rst m
column-vectors of Q. Each algorithm starts from the
same initial condition, that is casual for W and null for
L.

In order to compare the convergence speed of the al-
gorithms we use a suitable measure of convergence �

de�ned as �(W ) = kW � ~QkF , where ~Q is that matrix
whose columns are the �rst m of Q, and k � kF denotes
the Frobenius norm. Notice that the quantity � may
converge to di�erent values since the recovering of the
columns of Q is phase-blind.

Simulation presented in Figure 1 concerns cAPEX, jyj2{

cAPEX, jyj{cAPEX (that means  i = jyij), and 0{
cAPEX algorithms. The above results are relative to a
learning stepsize � = 0:005, network's dimension p = 10
and m = 5. Powers �2i were drawn from the exponential
law �2i = 32�i (where i ranges from 1 to p). These re-
sults show the new algorithms behaves quite better than
the original one.

5 CONCLUSION AND FURTHER WORK

In this work new theoretical issues on APEX-like real-
and complex-valued signals Principal Component ex-
traction are developed and discussed. Particularly:

� the learning algorithms were formally obtained
starting by a clearly stated optimization principle;

� a family of learning algorithms arises from the
above optimization process;

� the elements of the family are parameterized by
means of a set of inuence functions  whose
choice depends on the desired performances (and,
of course, on stability considerations);

� new elements of the family are experimentally
shown to behave better than the original version.

Even if computer simulations presented here show the
obtained  algorithms converge toward the expected
solutions, no analytical results on them are available.
Theoretical aspects about convergence and stability are
currently under investigation.
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