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ABSTRACT

This paper introduces a new statistical framework
for constructing triphonic models from models of less
context-dependency. The new framework is derived
from Bayesian statistics, and represents an alternative
to other triphone-by-composition techniques, particu-
larly to the model-interpolation and quasi-triphone ap-
proaches. The potential power of this new framework
is explored by an implementation based on the hidden
Markov modeling technique. It is shown that the new
model structure includes the quasi-triphone model as a
special case, and leads to more e�cient parameter es-
timation than the model-interpolation method. Two
strategies of state-level tying have been investigated
within the new model structure. Phone recognition ex-
periments on the TIMIT database show an increase in
the accuracy over that obtained by other systems.

1 INTRODUCTION

A key issue in triphone based continuous speech recog-
nition is the large number of parameters to be estimated
against the limited availability of training data. In pre-
vious years, various approaches have been proposed to
attack this problem. These approaches typically in-
clude model-interpolation, quasi-triphone and various
parametric tying strategies. In the model-interpolation
method [1], an under-trained triphone is re-tuned by
interpolating the model with others of less context-
dependency, i.e. the left-context, right-context and/or
context-independent models, which can be trained more
reliably. This technique can improve the robustness
of the models and the interpolation weights for bal-
ancing the combination have been determined either
by hand-tuning or by using deleted interpolation [1].
The quasi-triphone model [2] is based on a left-to-right
HMM structure and on an assumption that the contexts
mainly a�ect the outer states of an HMM. Therefore the
�rst and last states are trained to distinguish the left
and right contexts, respectively, and the central states
can be assumed to be context-independent. This tech-
nique typically reduces the number of distinct models
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to be estimated from � O(N3) to � 2O(N2), where N
is the number of phones. We refer to these two meth-
ods as triphone-by-composition since both approximate
triphonic context dependency via a composition of less
context dependency. In addition, various parametric ty-

ing methods have been proposed in HMM based sys-
tems. These techniques, including various types of state
tying (e.g. [3]) and mixture tying (e.g. [4]), approxi-
mate triphonic context dependency by sharing training
data from similar context-e�ects.

Given limited availability of training data, the para-
metric tying methods may lose signi�cant context res-
olution due to extensive clustering of the parameters
to meet the acoustic robustness. This loss of context
resolution can be considerably lower in the triphone-
by-composition methods because only biphonic context
dependency is to be estimated and therefore a smaller
degree of tying is needed. However, a drawback of the
triphone-by-composition method on its own is that it
may reduce the accuracy of the triphone model when
there are su�cient data to estimate a triphone accu-
rately. A better solution, thus, would be a combination
of the parametric tying and triphone-by-composition
methods by using a generalized backo� mechanism.
Rather than backing o� a triphone directly to a bi-
phone, as is implied in many parametric tying systems
to account for a shortage of training, the generalized
mechanism backs o� a triphone to a composed triphone,
therefore retaining a reasonable context sensitivity. The
obvious di�culty is how to formulate the composition.
This will be the focus of this paper.

Constructing triphone models based on model-
interpolation involves heuristics and/or intensive com-
putation in determining the interpolation weights. The
quasi-triphone model, on the other hand, is inaccurate
for some short phones such as stops, a�ricates and some
fricatives, which often have time durations no longer
than a single frame of the normal length. In other words,
the left and right context-e�ects are potentially tempo-
rally inseparable. In this paper we introduce a new sta-
tistical framework for composing a triphone model from
models of less context-dependency. The new model is



suggested as an alternative to the above methods hoping
to overcome the above mentioned problems. It is distin-
guished from the previous models in that it is built on
Bayesian statistics, rather than on a heuristic method.

2 THE BAYESIAN TRIPHONE MODEL

Assuming that x is a phone-level acoustic observation
and (a�; a; a+) a triphone unit, with a being some phone
and a� and a+ being its left and right contexts, respec-
tively. The problem of triphonic acoustic modeling can
be expressed as the estimation of the probability den-
sity function (pdf) p(x j a�; a; a+), of x generated from
(a�; a; a+). Using the Bayesian rule

p(x j a�; a; a+) =
p(a�; a+ j a; x)p(a; x)

p(a�; a+ j a)p(a)
(1)

If we assume that: 1) a� and a+ are independent given
a, i.e. p(a�; a+ j a) = p(a� j a)p(a+ j a), and 2) a�

and a+ are independent given a and x, i.e. p(a�; a+ j

a; x) = p(a� j a; x)p(a+ j a; x), (1) becomes

p(x j a�; a; a+) =
p(a� j a; x)p(a+ j x; a)p(x; a)

p(a� j a)p(a+ j a)p(a)
(2)

Therefore, by multiplying both the numerator and de-
nominator of (2) by p(x; a)p(a) it follows that

p(x j a�; a; a+) =
p(x j a�; a)p(x j a; a+)

p(x j a)
(3)

(3) indicates a novel way of approximating a triphone
model by composing models of less context-dependency,
i.e. p(x j a�; a), p(x j a; a+) and p(x j a), which
correspond to the pdf's of x given the left-context-
dependent (LCD), right-context-dependent (RCD) and
context-independent (CI) units, respectively. This com-
position leads to a reduction of the number of models to
be estimated from � O(N3) to � 2O(N2), without loss
of context coverage. The assumptions made above in
obtaining (3) simply mean that all combinations of the
left and right contexts are permitted in forming the tri-
phones. This causes no problem for training but it does
cause a problem for recognition, as in other triphone-
by-composition methods, by producing some illegal tri-
phones. The e�ect of these extra triphones can be lim-
ited by trigram phonotactic constraints, as addressed in
[2]. Because the derivation of (3) is based on Bayesian
statistics, we call (3) the Bayesian triphone model.

(3) is more a framework than a speci�c model. In
other words, it can be applied to many existing acous-
tic modeling techniques by associating the component
pdf's with the respective model-based likelihood func-
tion. In the following we describe the implementation
of this model by using standard hidden Markov model-
ing techniques.

3 ACOUSTIC MODELLING

Each component pdf on the right-hand side of (3) is as-
sociated with a corresponding acoustic model, which we
assume to be an HMM. Let x = (x1; : : : ; xT ) denote a
phone-level observation sequence and �, + and � di�er-
entiate the LCD, RCD and CI models, respectively, we
have for each model the state-based likelihood function

p(x j sc; �c) =
TY

t=1

bcsc
t

(xt) (4)

where c = �; + and �. (4) is the standard HMM rep-
resentation where �c is the HMM parameter set and
sc = (sc0; : : : ; s

c
T ) is the state sequence. Given (4), the

corresponding likelihood function associated with the
Bayesian triphone model can be expressed as

p(x j s�; s+; s�; �) =
p(x j s�; ��)p(x j s+; �+)

p(x j s�; ��)

=
TY

t=1

b�
s�
t

(xt)b
+

s+
t

(xt)

b�s�
t

(xt)
(5)

where � = (��; �+; ��) is the triphone model parame-
ter set. Without loss of generality, we assume that the
three component models, accounting for the same obser-
vation x, generate identical state-sequences subject to a
common initial-state probability vector [�i] and state-
transition probability matrix [aij]. So (5) is reduced to

p(x j s; �) =
TY

t=1

b�st(xt)b
+
st
(xt)

b�st(xt)
(6)

where s represents the common state-sequence shared by
the three component models. Subsequently, the state-
averaged likelihood function of the model is given by

p(x j �) =
X

s

�s0

TY

t=1

ast�1st
b�st(xt)b

+
st
(xt)

b�st(xt)
(7)

(7) is the triphone model which we implemented in this
paper. It is noted that this model includes the quasi-
triphone model as a special case. Typically, considering
a 3-state HMM for each component model. Using the
above notation, the LCD, RCD and CI state-based prob-
abilities are described by [b�1 ; b

�

2 ; b
�

3 ], [b
+

1 ; b
+

2 ; b
+

3 ] and
[b�1 ; b

�
2 ; b

�
3 ], respectively. The composed probabilities,

as indicated in (7), are given by

b�1 b
+
1

b�1
;
b�2 b

+
2

b�2
;
b�3 b

+
3

b�3

In the above, if we assume that the last two states of the
LCD model are context independent, i.e. b�2 = b�2 and
b�3 = b�3 , and that the �rst two states of the RCD model
are context independent, i.e. b+1 = b�1 and b+2 = b�2 , we
then end up with the composed state-based probabilities



by the new model as [b�1 ; b
�
2 ; b

+

3 ]. This turns out to
be the state probability topology assumed in the quasi-
triphone model.
Assume that each bci (x) (c = �; + and �) in (7) is a

mixture Gaussian density of a form

bci (x) =
X

n

wc
inb

c
in(x) (8)

where bcin(x) is the nth Gaussian component in
state i and wc

in the corresponding weight. Substi-
tute (8) into (7), note that 1=

P
nw

�
stn

b�stn(xt) =P
nw

�
stn

b�stn(xt)=b
�
st
(xt)2 and

QT

t=1

P
nw

c
stn

bcstn(xt) =P
n1:::nT

QT

t=1w
c
stnt

bcstnt(xt), we therefore can write
p(x j �) as

p(x j �) =
X

s

X

N

X

M

X

K

p(x; s;N ;M;K j �) (9)

where p(x; s;N ;M;K j �) is de�ned by

p(x; s;N ;M;K j �) = �s0

TY

t=1

ast�1st

�w�stntb
�

stnt
(xt)w

+
stmt

b+stmt
(xt)

w�stktb
�

stkt
(xt)

b�st(xt)
2

(10)

and N , M and K represent the T -tuples (n1; : : : ; nT ),
(m1; : : : ;mT ) and (k1; : : : ; kT ), respectively. The sum-
mations for N , M and K are over all possible
(n1; : : : ; nT )s, (m1; : : : ;mT )s and (k1; : : : ; kT )s, respec-
tively. A forward-backward re-estimation algorithm can
be developed for estimating the model de�ned above.
Following the standard practice, a maximum-likelihood
estimate of �, based on the likelihood function p(x j �)
de�ned in (9), can be achieved by an iterative maximiza-
tion of a Baum's auxiliary function

Q(�; �̂)

=
X

s;N ;M;K

p(x; s;N ;M;K j �) lnp(x; s;N ;M;K j �̂)

(11)

with respect to �̂ for a given previous estimate �.
Maximizing Q(�; �̂) against parameters of the LCD,
RCD and CI components results in their respective re-
estimation formula (a more detailed description of the
algorithm may be found in [9]). The above algorithm
constructs the LCD, RCD and CI component models
and their composition in one step. This constitutes
a potential advantage of the new model structure in
terms of computational e�ciency, as compared with the
model-interpolation based approaches. The traditional
interpolation model structure constructs a state-i obser-
vation probability using a form bi =

P
n �inbin, where

bin is the n'th component probability and �in the in-
terpolation weight. The interpolation weights are esti-
mated separately from the component probabilities us-
ing, for example, deleted-interpolation on deleted blocks
of training data [1].

The problem of tying parameters within the new
model is raised to improve the trainability of the model's
biphone components. In particular, two strategies of
state-level tying have been studied as a complement to
the above training algorithm. In the �rst strategy, a
tied-mixture structure [4] is introduced to the corre-
sponding states of all the three component models ac-
counting for the triphones of a phone. In such a model,
the state-i observation density of each component model
can be expressed as

bci (x) =
X

n

wc
inbin(x) c = �; +; � (12)

where the bin(x)s are the state-dependent mixture-
component densities (state codewords), shared across
all the component models covering the triphones of a
phone; w�ins, w

+

ins and w�ins are the left-context, right-
context and context-independent mixture-component
weights, speci�c to their respective context phone and
the context independency. Next, merging the context-
speci�c weight-distributions within the left and right
biphones of a phone is introduced to the above tied-
mixture model. This merging accounts for those bi-
phone weights trained with too few occurrences. The
merging is based on the increase in the weighted-by-
counts entropy [1] and is stopped by a threshold indicat-
ing the minimum number of training samples required
to estimate a weight distribution.

4 EXPERIMENTS

Experiments are performed with the TIMIT database.
Following convention, we recognize the standard 39-
phone set. Both the core and complete test sets are
used in the experiments.
The Bayesian triphone model with tied-mixture states

is implemented, with the merging of the context-speci�c
mixture-component weights as an option. A simple
HMM structure, with 3 states and a left-to-right topol-
ogy, is used throughout the modeling. The codebook
size for each tied state is chosen to be 16, each codeword
being a Gaussian density with a diagonal covariance ma-
trix. The speech signal is divided into frames, each with
a length of 20 ms and adjacent frames overlapped by 10
ms. Ten Mel-frequency cepstral coe�cients (MFCCs)
and one normalized logarithmic energy, along with their
�rst and second order di�erential versions de�ned over
a window of �20 ms, are calculated as the observation
vector for each frame. The models are initialized by �rst
training a CI HMM for each phone. Afterwards, each
required LCD and RCD model is initialized by cloning
the corresponding CI model. These serve as the initial
component models for composing the Bayesian triphone
models. Then, for each training sentence, the embedded
training of the Bayesian triphone models is performed
using the algorithm described in Section 3. Three em-
bedded training iterations are run in each experiment. A



bigram phone language model is estimated on the train-
ing set and is applied to the recognition experiments.
Table I and Table II show the recognition results of

the Bayesian triphone model on the core and complete
test sets, respectively. These results are produced by the
models with and without merging the context-speci�c
mixture weights. For merging the mixture weights, two
thresholds, 50 and 100, are used, respectively, each set-
ting a bottom number of training samples required to es-
timate a mixture-weight distribution. Since the TIMIT
training set contains a signi�cant number of both left
and right biphones with very low frequency of occur-
rences, many weight distributions will be under-trained.
This lack of robustness can be improved by an appropri-
ate merging of the similar weight distributions, leading
to an improvement in the recognition performance. This
is seen in both Table I and Table II.
The comparison between our results and some of the

best results reported previously by other researchers is
summarized in Table III. All the models being compared
to are based on continuous densities and are context
dependent. The comparison is made on the same test set
whenever the corresponding results are available. To the
authors' knowledge, the accuracies of 74.4% and 75.6%,
obtained by the new model on the core and complete test
sets respectively, are higher than those so far reported
in the literature.

5 CONCLUSIONS

A new statistical framework for constructing triphonic
models from models of less context-dependency is intro-
duced. This composition reduces the number of models
to be estimated by higher than an order of magnitude
and is therefore of great signi�cance in relieving the dtat
sparsity problem in triphone-based continuous speech
recognition. The potential power of this new framework
is explored, both algorithmically and experimentally, by
an implementation with hidden Markov modeling tech-
niques. This implementation is applied to the recogni-
tion of the 39-phone set on the TIMIT database. The
new model achieves 74.4% and 75.6% accuracy, respec-
tively, on the core and complete test sets.
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Table I. Phone recognition results (%) of the new
triphone model on the core test set

Merging
threshold Corr. Acc. Sub. Del. Ins.
No merging 76.8 72.9 17.3 5.9 3.9

50 77.7 74.0 16.3 6.0 3.7
100 77.8 74.4 16.0 6.2 3.4

Table II. Phone recognition results (%) of the new
triphone model on the complete test set

Merging
threshold Corr. Acc. Sub. Del. Ins.
No merging 78.6 74.9 15.5 5.9 3.7

50 79.0 75.6 15.1 5.9 3.4
100 79.0 75.6 15.0 6.0 3.4

Table III. Comparison of phone accuracy (%) between
the new model and some other context-dependent

models for recognizing TIMIT 39-phone set
Test set

Model Core Complete Other
Quasi-triphone [5] 70.4
Gender-speci�c [6] 71.1 73.4
State clustering [3] 72.3
Polynominal state [7] 73.5
Recurrent neural net [8] 73.9 75.0
New Bayesian triphone 74.4 75.6


