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ABSTRACT

In many joint source-channel coding applications, there
is a need to assess the performance of a system on a
given channel, with di�erent combinations of channel
codes. What is interesting is to know some measure of
the overall bit error rate, in order to design the source
and/or channel codes accordingly.
We propose here an approximation of the bit error rate
of the cascade of a linear block code and a memoryless
binary channel. With this approximation, both of these
components can be considered in this respect as a single
binary symmetric channel, with known transition prob-
ability, and can be used as such for further processing.
We also show some possible applications in joint source-
channel coding schemes.

1 INTRODUCTION

The �eld of joint source-channel coding (JSCC) has been
studied in many di�erent ways up to now and has lead to
numerous di�erent techniques [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
One of the problems of the joint study of source and

channel codes is to obtain a coherent quality measure
for these two coders. Many systems rely on the knowl-
edge of a bit or symbol error probability of the channel
but fail to take into account the presence of an error
correcting code.
We propose here an approximation of the bit error

rate of a channel protected by a linear block error cor-
recting code. We will �rst derive this approximation,
together with upper and lower bounds on the bit error
rate. Then, we will test the performance of the approxi-
mation on di�erent channel codes, and study its proper-
ties. Finally, we will outline some possible applications
of this simpli�cation on joint source-channel coders.

2 DERIVATION OF THE APPROXIMA-

TION

Given a binary symmetric channel (BSC) of known tran-
sition probability p, we will try to �nd in this section an
approximation of the bit error rate on a binary signal
transmitted on this channel, after protecting it with an
error correcting code.

We will limit ourselves to linear block codes. An (n; k)
block code maps a k-bit symbol to an n-bit codeword,
adding thus n � k redundancy bits to the original sig-
nal. Its rate r is de�ned as the ratio k

n
. The quality of

the code is measured in general by its error correcting
capacity t, which is the maximum number of bit errors
that a coded symbol can incur while still being decoded
correctly.
Denoting by p

0 the bit error rate of the combination
of the channel and the channel (de)coder, we can �rst
easily derive an inferior bound on p

0 as follows. If the
transmitted word is erroneously decoded, it means that
at least one of the k bits of the output of the channel
decoder is false, so that the probability that a bit er-
ror occurs when a word is decoded incorrectly can be

bounded by
1

k
. Now the probability pword that a word

error occurs is simply the probability that more than t

bit errors happen during transmission :

pword =

nX
i=t+1

�
n

i

�
p
i(1� p)n�1:

The above expression1 computes the probability pword

by simply adding the probabilities of all possible channel
error patterns on more than t bits of the same coded
symbol. So, we have

p
0 �

1

k

nX
i=t+1

�
n

i

�
p
i(1� p)n�i: (1)

Now an upper bound is given by the following steps :
if we decompose the bit error rate (BER) as p

0 =Pn

i=0
p(eji):p(i), where p(i) is the probability that a re-

ceived n-bit word contains exactly i bit errors and p(eji)
is the bit error rate of a word containing i errors, we can
easily upper bound all terms of this expression. First,

p(i) =

�
n

i

�
p
i(1 � p)n�i, which is an exact expression.

Next, let us examine what happens to p(eji) for di�erent
values of i.

1As usual,

�
a

b

�
denotes the number of possible combinations

of a objects taken b by b.



� If i � t, the message will be decoded correctly, thus
none of the decoded bits will be wrong, so that
p(eji) = 0.

� If i > t, let us denote by c the sent codeword, by r̂

the received message, and by ĉ the codeword into
which it will be decoded. The process is the follow-
ing : c is sent over the channel, i bit errors are added
to it to give r̂, and the channel decoder interprets
r̂ as an erroneous coded symbol, and corrects it as
ĉ. Then, the hamming distance dH(c; r̂) between r̂

and c is i. On the other hand, the decoder can only
correct up to t bit errors, so that it will always map
a received n-bit word to a codeword which di�ers
at most in t bit places from the received n-bit word,
so that

dH(r̂; ĉ) � t;

since r̂ will be decoded as ĉ. This gives us a total
of at most i + t bit errors between c and ĉ. In the
worst case, these i + t bit errors will all be located
in the k bits of the message, so that we can upper

bound P (eji) by
i + t

k
.

� Of course, for i � k�t, it makes no sense to use the
above ratio, which is higher than 1, and is supposed
to be a probability. In such a case, we will use 1
instead.

Combining the above arguments, we get the upper
bound :

p
0 �

k�t�1X
i=t+1

i + t

k

�
n

i

�
p
i(1� p)n�i

+

nX
i=k�t

�
n

i

�
p
i(1� p)n�i (2)

Finally, to obtain the approximation we are looking
for, we follow the same path as above, but instead of
making a worst-case assumption on p(eji), we make an
assumption that is a bit more fair : when i > t, we con-
sider that the i + t errors will be spread equally among

the n bits of ĉ, so that p(eji) '
i + t

n
and

p
0 '

n�t�1X
i=t+1

i + t

n

�
n

i

�
p
i(1� p)n�i

+

nX
i=n�t

�
n

i

�
p
i(1� p)n�i (3)

3 QUALITY AND PROPERTIES OF THE

APPROXIMATION

3.1 Comparisons with simulations

We compare here the bit error rate computed by (3) to
the one obtained through simulations. For each given
code, we have simply encoded a sequence of random bits,
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Figure 1: Performance of the approximation and bounds
for a (63,57) and a (31,21) BCH code.

made a computer simulation of the channel, and counted
the bit errors at the output of the channel decoder. Fig-
ure 1 presents these results for a binary (63; 57) BCH
code and a (31; 21) BCH code. The horizontal axis rep-
resents the channel transition probability (p) and the
vertical axis is the BER after channel coding p

0, repre-
sented by the approximation (3) and the bounds (1) and
(2). The �gure also shows a bound on p

0 obtained by the
sphere packing bound, as proposed in [1]. Clearly, our
approximation is good, and our bounds are relatively
tight. In general, our lower bound on p

0 shows a simi-
lar behavior as the one derived from the sphere packing
bound.

3.2 Case of repetition codes

One property that we would like to point out is that the
approximation error is exactly zero for repetition codes.
Repetition codes are (2m+1; 1) codes, whose generator
matrix is simply given by

G = [111 � � �1] :

This means that one simply sends 2m+1 copies of each
bit instead of only one copy. On the decoder side, the
decision is taken on the majority, i.e. the decoding will
be correct as long as m + 1 bits out of the 2m + 1 of
the codeword remain unchanged. Thus the repetition
code can correct exactly t = m errors. Since each input
bit corresponds to one word, the word error probability
is the same as the bit error probability, and is given
exactly by :

p
0 =

2t+1X
i=t+1

�
2t+ 1

i

�
p
i(1� p)2t+1�i:



Now expressing the approximation from above with this
particular code, we see that our computations give

p
0 '

2t+1X
i=n�t=t+1

�
2t+ 1

i

�
p
i(1� p)2t+1�i;

which clearly is the exact expression.

4 SOME POSSIBLE APPLICATIONS

Optimal quantizers for noisy channels. The de-
sign of optimal quantizers for noisy channels [5] relies on
the knowledge of the input signal pdf as well as the tran-
sition probabilities between states of the quantizer due
to the channel. Our approximation can be used as is to
provide channel coding capabilities to this system, with-
out major changes in the quantizer design algorithm :
one only has to replace the parameter p by p

0.

Enhanced decoding by residual correlation. The
use of residual redundancy in the transmitted signal to
improve the quality of the reconstruction at the decoder
side has been used in some joint source-channel cod-
ing systems [2, 3]. Once again, we can introduce easily
channel codes in these schemes by the above approxi-
mation and come to a really joint design : it allows to
know what quality improvement we can expect from the
addition of a channel code.

Integration into a complete JSCC system. As a
last application, we would like to point out the work
we have carried out [11, 12] on the optimization of a
complete image coding chain including Hu�man coding

based on the wavelet transform. Thanks to the approxi-
mation developed here, we were able to design the whole
transmission chain by taking into account bit error prob-
abilities as well as desynchronization probabilities. The
reader is referred to [11] for more information.

5 CONCLUSION

We have presented here an approximation of the bit er-
ror rate of a channel protected by a linear block code,
which can be useful for numerous joint source-channel
coding applications. We have also shown that its per-
formance is superior to the one of the bound proposed
in [1]. Another advantage is that the approximation is
coherent, in the sense that it gives the true BER for rep-
etition codes. Possible applications have been outlined
and can be simply summarized as a possibility to de-
sign a system in terms of BER even when a linear block
error-correcting code is used.
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