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ABSTRACT

This paper considers optimal decoding for vector quantiza-

tion over a noisy channel with memory. The optimal de-

coder is soft in the sense that the unquantized channel out-

puts are utilized directly for decoding, and no decisions are

taken. Since the complexity of optimal decoding is high, we

also present an approach to sub-optimal decoding, of lower

complexity, being based on Hashimoto's generalization of the

Viterbi algorithm. We furthermore study optimal encoding

and combined source{channel coding. Numerical simulations

demonstrate that both optimal and sub-optimal soft decoding

give prominent gain over decision-based decoding.

1 INTRODUCTION

The study of combined source-channel coding has become a

major �eld of research, partly motivated by the increasing im-

portance of wireless communications. The �eld is, however,

also interesting from a more fundamental point of view: Im-

plicit in Shannon's work is the fact that the source and chan-

nel coding can be separated without loss of optimality [1].

However the positive coding theorems of information theory

only show such separability in the limit of in�nite codeword

length and hence in�nite delay, thus justifying the study of

combined source-channel coding, for example, when delay is

a limiting factor (such as in two-way communications). Much

of the existing work has concerned vector quantization (VQ)

for noisy channels [2{12]. Most previous work, such as [2{4],

has concentrated on discrete memoryless channels, with an

emphasis on the binary symmetric channel. Some work, for

example [5,6,11], has however studied robust VQ over wave-

form channels using soft decoding. In soft VQ decoding the

operation of the decoder is not de�ned by a look-up in a �nite

decoder codebook, instead all of the received soft information

is utilized for decoding and the decoder, in e�ect, has an in-

�nite output alphabet. Such decoding was studied for the

AWGN channel in [5, 6, 8, 11], and for Rayleigh fading chan-

nels in [7, 9, 11]. Soft decoding has also been employed for

combined multiuser and VQ decoding [13].

In the work mentioned so far, a memoryless channel was as-

sumed. Most practical communication channels are, however,

not memoryless. There are a number of ways to handle the

obstacles introduced by channel memory. For example, for

channels with intersymbol interference (ISI), channel equal-

ization algorithms are employed (see, e.g., [14, 15] and [16]).

In this paper we take on the approach of designing optimal

VQ encoding/decoding for a given channel with memory (or

ISI). Previous work on VQ for channels with memory can be

found in [10, 17].

2 PRELIMINARIES

The investigated communication system is depicted in Fig-

ure 1. The purpose of the system is to transmit source vec-

tors, Xn, to a destination by the use of VQ. The VQ data

is transmitted over a noisy channel with memory. Estimates,

X̂n, are then formed by the decoder based on the received

vectors Rn. This section presents the di�erent parts of the

system, and states the basic assumptions made.

encoder channel decoder

    Xn   In     Rn       
ˆ X n

Figure 1: System model.

The source, fXng, is assumed stationary. The encoder maps

d-dimensional source vectors into integers according to Xn 2

Si ) In = i where the sets fSig
N�1
i=0 form a partition of

R
d . We assume that N = 2L, where L is an integer. Let

P (i) = Pr(Xn 2 Si), and de�ne the encoder centroids as

c(i) = E[XnjIn = i].

We study discrete-time channels, modeled according to

Rn = s(I
n
n�M ) +Wn; (1)

where Rn is the K-dimensional channel output, s(Inn�M) is

a known deterministic function of the M + 1 transmitted in-

dices Inn�M (where Inn�M = (In�M ; : : : ; In)
T ), and fWng is

iid noise with known pdf, pW . Physically, for M > 0 such

a model is valid for signaling over a stationary channel that

introduces memory according to the mapping s(Inn�M ). An

important special case, that will be considered in the sim-

ulations, is a binary-input Gaussian channel with memory

modeled using a �nite impulse response linear �lter. The

output of this channel, at \bit-level" time m, is given by

Rm =

MbX
l=0

hlbm�l +Wm; m = 1; 2; 3; : : : (2)

where hl; 0 � l � Mb, is the (real-valued) impulse response

of the channel and fWmg is AWGN of known variance �2W .

Here, the bits, bm(In) 2 f�1g, of the index In at \block-

level" time n, are transmitted as bm(In) = b(n�1)L+m; m =

1; 2; : : : ; L. In this model Rm corresponds to whitened sam-

ples from the receiver matched �lter in coherent BPSK sig-

naling over a linear �lter channel with AWGN [16].

Decoding, at time n, is based on the observation Rn
1 = rn1 ,

(where Rn
1 = (RT

1 ; : : : ;R
T
n )

T ). The decoder produces an es-

timate, X̂n��(r
n
1 ), of the vector Xn�� transmitted at time



n � �, where � � 0 is the decoding delay. Since Rn is

the \unquantized" channel output, the decoder is soft in the

sense that the estimates are not chosen from a �nite code-

book. On the contrary, the decoder output alphabet is in-

�nite. Expressed di�erently, the decoder is estimator -based

rather than detection-based (c.f., [5, 6, 11]).

We de�ne the distortion, �D, of the system as

�D , �EkXn�� � X̂n��(R
n
1 )k

2
;

where �E[Xm] , limM!1M�1
PM

k=1
EXk, and \optimal"

will throughout the paper refer to the minimization of �D.

We assume that the limit exists in all cases of interest.

3 OPTIMAL DECODING

In this section we study optimal soft VQ decoding, assum-

ing that the source, the encoder and the channel are given.

A more thorough account for derivations and proofs can be

found in [18].

The optimal decoder is the MMSE estimator [10, 18]

E[Xn��jr
n
1 ] =

X
in
1

E[Xn�� ji
n
1 ]P (i

n
1 jr

n
1 ): (3)

Thus, optimal decoding at time n involves a sum over Nn

terms (increasing with time!), making decoding based on (3)

impractical. To overcome this di�culty we assume that the

source can be modeled as a Markov process. We also assume

that the resulting index process fIng is Markov. Under these

assumptions, it can be shown that (c.f. [18])

E[Xn��jr
n
1 ] �

X
in
n���1

z(i
n
n���1)P (i

n
n���1jr

n
1 ) , ~Xn��(r

n
1 )

where z(i) , E[Xn��jI
n
n���1 = i]. In the rest of the paper,

we will focus on the decoder ~Xn��(r
n
1 ). We see that ~Xn��(r

n
1 )

is formed as a sum over the vectors fz(i)g, weighted according

to Pr(Inn���1 = ijrn1 ). Hence, the vectors fz(i)g are used as

\codevectors" and the decoding is based on the a-posteriori

most probable vectors. We refer to the vectors fz(i)g as the

multi-centroids of the encoder, since they are generalizations

of the \single-index" centroids fc(i)g, based on � + 2 indices

instead of only one (c.f. also [19]).

In order to implement ~Xn��(r
n
1 ), the a-posteriori prob-

abilities have to be computed from the received data. The

following presents a recursion for updating these probabilities

in time as more data arrives: For ease of notation de�ne

jn =

�
inn�M = (in�M ; : : : ; in)

T ; 0 � � �M � 1

inn���1 = (in���1; : : : ; in)
T ; 1 �M � �

Then we have that

~Xn��(r
n
1 ) =

X
jn

z(i
n
n���1)P (jnjr

n
1 ): (4)

The conditional pdf, describing the channel output in the

model (1), is p(rnji
n
�1

) = pW (rn � s(inn�M )). Regarding

this pdf we note that; (i) p(rnji
n
�1

) = p(rnji
n
n�M ), and; (ii)

p(rnjr
n�1
1 ; inn�M ) = p(rnji

n
n�M ). Utilizing these properties of

the pdf, it can be shown (c.f., [15]) that a recursion for the

updating of the a-posteriori probabilities exists, and can be

formulated as a prediction step

P (jnjr
n�1
1 ) = P (injin�1)

N�1X
in�1�K=0

P (jn�1jr
n�1
1 ); (5)

where K =M for � �M � 1 and K = � + 1 for M � �, and

a �ltering step

P (jnjr
n
1 ) =

P (jnjr
n�1
1 )p(rnjjn)P

jn
P (jnjr

n�1
1 )p(rnjjn)

: (6)

Similar recursions to these have been presented before in the

context of maximum a-posteriori detection for channels with

ISI (see, e.g., [15]).

    rn

delay

            

    

      

      {P(jn−1 r1
n −1 )}

      {P(jn r1
n −1)}

prediction       {P(jn r1
n)}

filtering       
  

ˆ X (r1
n )n −δ∑

    {z(i)}

Figure 2: Recursive implementation of the optimal decoder.

The operation of the decoder is illustrated in Figure 2: One

new channel output vector, rn, is received. The probabili-

ties are updated according to (5) and (6), and the codebook,

fz(i)g, is then utilized for decoding as described in (4).

4 GVA-BASED DECODING

Assume that � �M , for simplicity, and consider the expres-

sion (4) for ~X, being a sum over N�+2 terms. It is reasonable

to assume that terms in the sum corresponding to low values

of the probabilities P (inn���1jr
n
1 ) can be neglected. Based on

this observation, we formulate an approach to sub-optimal

soft decoding. The proposed method utilizes Hashimoto's

generalized Viterbi algorithm (GVA) [20]. In the following

we provide a short description of this scheme; more details

can be found in [18].

Let v(n) = in1 (corresponding to the bit-sequence bnL1 ,

where b(n�1)L+m = bm(In)), u(n) = inn���1 and s(n) =

bnLnL��+1 (with � < L(� + 2)). The vector v(n) is said to

have the label s(n) if the corresponding bit-sequence, bnL1 ,

ends with s(n). One step of the algorithm can now be de-

scribed as follows:

(0) As initial condition at time n the algorithm retains, for

each s(n� 1), a number of S surviving paths, v(n� 1), each

having the label s(n�1). For each path the value of the joint

pdf p(v(n � 1); rn�11 ) is stored. Also stored, is the end part

u(n� 1) of v(n� 1);

(i) One new vector, rn, is received. For each of the S2� saved

paths, and each value of in, the probability p(v(n); r
n
1 ) is cal-

culated, using the stored probabilities, p(v(n � 1); rn�11 ), as

p(v(n); rn1 ) = p(rnji
n
n�M )P (injin�1)p(v(n�1); rn�11 ) and the

new paths, v(n), are then classi�ed according to their label;

(ii) For each s(n) the paths v(n), having label s(n), corre-

sponding to the S largest values of p(v(n); rn1 ) are found and

stored;

(iii) The last step at time n is the soft decoding, based on

the approximation

~Xn�� �

P
z(u(n))p(v(n); rn1 )P

p(v(n); rn1 )
;

where the sums are taken over all saved probabilities and

paths.



The complexity of the algorithm is dominated by the compu-

tation and comparison of new candidates in steps (i-ii). As

a function of �; �; S and L, the complexity of one step of the

algorithm is O(S2�+L) operations [20]. Hence, the tradeo�

between performance and complexity can be set by the choice

of � and S. Note that the complexity is signi�cantly lower

than for optimal decoding. We refer to GVA-based decoding,

with parameters � and S as GVA(�,S) decoding.

5 OPTIMAL ENCODING

Here we consider optimization of the encoder. The optimal

encoder regions fS�i g for a given (but arbitrary) decoder, X̂,

and a memoryless source are given by

S
�

i =

�
x : i = argmin

i0
�E
h
jjx� X̂n��(R

n
1 )jj

2
jIn�� = i

0

i�
:

(A proof can be found in [18].) For sources with (Markov)

intervector memory this expression gives a good approx-

imation to the optimal regions under the condition that

p(in1 n in�� jxn�� ; in��) � p(in1 n in�� jin��) (where i
n
1 n in�� =

(i1; : : : ; in���1; in��+1; : : : ; in)
T ). Intuitively, this condi-

tion says that Xn�� does not contain (much) more infor-

mation about In1 n In�� than does In��. Consequently

p(in1 n in�� jxn��; in��) � p(in1 n in�� jin��) is a reasonable

assumption when in represents xn closely.

The expression for the optimal encoder regions can be em-

ployed in an iterative joint design of the encoder-decoder pair,

giving a combined source-channel coding approach accord-

ing to the principle of channel optimized vector quantization

(COVQ) (c.f. [2{4] and [18]).

6 SIMULATIONS

In this section we investigate the performance over two di�er-

ent binary channels: Channel 1 : of length Mb = 2 and with

impulse response h20 = (0:407; 0:815; 0:407), and Channel 2

of length Mb = 4 with h40 = (0:227; 0:460; 0:688; 0:460; 0:227)

(both taken from [16] p. 616). Both channels have spec-

tral zeros on the unit circle. We consider �rst-order Gauss-

Markov sources with correlation a, modeled as Xm =

aXm�1 + Um where fUmg is iid and Gaussian. The cor-

responding vector source, fXng, is obtained as Xn =

(X(n�1)d+1; : : : ; Xnd)
T . Performance is measured in terms of

the output signal-to-noise ratio, EjjXnjj
2= �EjjXn�X̂njj

2 (ab-

breviated \SNR" below), versus channel signal-to-noise ratio

(CSNR). For the binary channels the employed de�nition of

CSNR is ��2W
PMb

m=0 h
2
m.

We compare the introduced soft decoders to soft deci-

sion Viterbi equalization (maximum likelihood sequence de-

tection), according to [14], plus table-look up VQ decoding.

This two-stage approach is referred to as the Viterbi decoder

for simplicity. We use a large �xed delay, �V, in the imple-

mentation. The decoder codebook is de�ned by the encoder

centroids in the RVQ results, and by the optimal decoder

vectors (see, e.g., [4]) in the COVQ results. The transition

matrix of the discrete channel given by the concatenation of

the channel and the Viterbi detector was estimated. Employ-

ing this transition matrix, good index assignments (IAs) were

obtained using simulated annealing (c.f., [3]), and COVQ de-

sign was carried out according to, e.g., [4]. For simplicity,

we use the notation \V��V" for the discrete channel (at a

particular CSNR), where �V is the window-size. In all re-

sults for soft decoding it is assumed that the decoder knows
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Figure 3: Performance for channel 1. Gauss-Markov source with
a = 0:9, VQs with L=4 and d=4. (a) Optimal decoding; (b)

GVA(4,4); (c) GVA(2,4); (d) GVA(1,2); and (e) Viterbi decoding.
For all soft decoders � = 1 (4 bits), and for Viterbi decoding the
delay is 40 bits (channel time-units).
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Figure 4: Channel 2, Gauss-Markov source with a = 0:9. VQs
with L = 7 and d = 3 (rate 7/3). (a) multi-centroids; (b) centroids;
(c) Viterbi decoding, and (d) random IA, Viterbi decoding. The
soft decoders have � = 1 (7 bits), and the Viterbi decoder �V = 70.

the CSNR. In practice the decoder has to use (non-perfect)

estimates of the CSNR computed at the receiver.

Figure 3 illustrates the performance of optimal decoding

and GVA-based decoding. The source is Gauss-Markov with

a = 0:9, and the encoder is de�ned by a VQ trained for a

noiseless channel. The IA of the encoder is equal in all cases

and was obtained for the discrete V-40 channel at a CSNR of

5 dB. Hence, the IA is optimized for Viterbi decoding. We use

the same encoder in all cases to investigate the impact on the

performance from di�erent decoders. As can be observed, the

gain of optimal soft decoding over Viterbi decoding is promi-

nent. For example at an SNR of 7 dB, the gain is 4:1 dB in

CSNR. We also note that the GVA-approximations perform

well compared to Viterbi decoding. The gain of optimal soft

decoding over Viterbi decoding is mainly due to two facts: (i)

soft decoding gives a gain over decision-based decoding; and

(ii) the soft decoders utilize knowledge of the source statistics

for error protection, since the a-priori (Markov) probabilities

are part of the decoder expression (4). This means that the

soft decoders can utilize intra- and intervector source redun-

dancy to counteract channel noise and distortion (c.f. [21]).

Figure 4 shows the performance for VQs of higher rate

(rate 7=3) than of those employed in Figure 3. The per-

formance is investigated for channel 2. The plot shows the

performance of an encoder optimized for a noiseless channel,



Table 1: COVQ performance (SNR in dB) over channel 1. Results
for rate 2, 1 and 0.5, 4-dimensional VQ for Gauss-Markov and

iid Gaussian sources, for soft and Viterbi decoding. For the soft
decoders � = 1. The Viterbi decoders all use �

V = 40.

Gauss-Markov iid Gauss
Soft Viterbi Soft Viterbi

CSNR [dB] 2 dimensions and 4 bits

9 13.1 11.2 8.31 7.91
7 11.7 9.37 7.24 6.66
5 10.4 7.73 6.12 5.48

3 9.33 6.46 5.17 4.44
1 8.59 5.51 4.31 3.60

CSNR [dB] 4 dimensions and 4 bits

9 10.1 8.98 4.11 4.00
7 9.39 7.81 3.54 3.29

5 8.32 6.60 2.87 2.58
3 7.46 5.62 2.31 1.99
1 6.93 4.80 1.89 1.57

CSNR [dB] 8 dimensions and 4 bits

9 7.74 6.95 1.96 1.92

7 7.09 6.14 1.66 1.56
5 6.46 5.36 1.36 1.21
3 5.85 4.59 1.08 0.92

1 5.20 4.13 0.86 0.72

with GVA(4,4) and Viterbi decoding. In curve a the de-

coder of (4) has been employed, and in b the multi-centroids

fz(i)g have been approximated by the single-index encoder

centroids; z(i) � E[XnjIn = i]. The IA of the encoder was

optimized for the V-70 channel at a CSNR of 5 dB. Also

shown, for reference, is the performance of Viterbi decoding

for an encoder with random IA. As can be observed, there is

a large gain of soft decoding over the Viterbi decoder. For

example at an SNR of 10 dB, the gain of optimal decoding

over Viterbi is about 1.9 dB in CSNR. Also, as expected,

the random IA plus Viterbi decoding performs very poorly,

illustrating the importance of a good IA.

Table 1 shows the performance of di�erent COVQ schemes,

employing optimal and Viterbi decoding for Gauss-Markov

(a = 0:9) and iid Gaussian sources. The performance was

measured at the same CSNRs as for which the COVQs were

trained (perfect match). The same general conclusions as

made in connection to the �gures hold also for the COVQ

performance. In particular, we note that the gain of soft

decoding is larger for low CSNRs, and for correlated sources.

7 CONCLUSIONS

We have introduced the optimal (MMSE) soft decoder for

vector quantization over a noisy channel with memory. Since

the complexity of optimal decoding is high, we also pre-

sented a sub-optimal approach, of lower complexity, based on

Hashimoto's generalization of the Viterbi algorithm. We, fur-

thermore, considered optimal encoding and combined source{

channel coding. Numerical simulations then veri�ed the the-

oretical results, and demonstrated that the introduced de-

coders can give prominent gain over decision-based table look-

up decoding.
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