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ABSTRACT

Earlier methods of design have used iterative approaches
such as the well-known Parks-McClellan algorithm or
some variant of linear programming. Here we give a
direct method of design, using Chebyshev polynomials,
which provides a reduction in design time over previous
methods by about a factor of ten. The ideal equal-ripple
response in both passband and stopband is not achieved
exactly, but the error is extremely small and would nor-
mally be undetectable in practical realizations.

1 INTRODUCTION

In the implementation of multirate digital systems an
important fundamental building block is the half-band
�lter. It is, of course, well known that half-band �lters
can easily be designed by simply providing appropri-
ately symmetrical speci�cations to the popular Parks-
McClellan optimal-FIR �lter design program, which
uses the Remez algorithm. The program then computes
the known zero-valued tap coe�cients and the center co-
e�cient of value 0.5, along with the unknown tap values
that are interleaved with them, as if all the values were
unknown at the outset. The errors in the values given by
the program for the known coe�cients clearly illustrate
the (surprisingly large, we thought) amount by which
the �lter coe�cients computed by the Parks-McClellan
program are in error.

In [1] (see also problem 4.30 of [2]) a clever method
is described for modifying the �lter speci�cation that is
given to the Parks-McClellan program so that initially it
designs a �lter of about half the required length. From
this the desired half-band �lter can be created by sim-
ply interleaving the known zero-valued even-index coef-
�cients with the Parks-McClellan-computed odd-index
coe�cients, scaled by a factor of 0.5, and adding a
center-tap coe�cient of 0.5. Since the computational re-
quirements of the Parks-McClellan algorithm grow with
�lter length at a superlinear rate, the design time for
computing the tap values when using the trick described
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in [1] proves to be smaller than that for a direct use of
the Parks-McClellan program by about a factor of ten.

Use of the above-cited techniques with present com-
puters and workstations probably meets the design re-
quirements for practical half-band �lters with accept-
able running times. But the question still remains
whether there might be an even faster design technique,
specially tailored to the design of half-band �lters, that
can bene�t computationally from its special properties
in ways that go beyond what is possible when using a
general-purpose �lter design program such as the Parks-
McClellan algorithm.

We have found such a design technique and will de-
scribe it in this paper. Rather than improving the com-
putation speed over the Parks-McClellan algorithm by
approximately a factor of ten, as with [1], our method
speeds up the computing by about a factor of one hun-
dred. Thus, on a personal computer, a design that might
take two minutes using the Parks-McClellan algorithm
and about 12 seconds with the method of [1] can, in fact,
be completed in slightly more than one second using our
method.

The design is carried out by representing, at all stages,
the polynomials concerned by Chebyshev polynomial ex-
pansions. This is done for several reasons. Firstly, the
properties of linear-phase FIR �lters are naturally de-
scribable in terms of Chebyshev polynomials. Secondly,
such expansions tend to lead to equal-ripple behaviour
by their very nature. And thirdly, when the degree of
a polynomial is high, its properties are often very sensi-
tive to the normal coe�cients of powers of the variable,
whereas they are much less sensitive to the coe�cients in
its Chebyshev polynomial expansion. It turns out that
the slight extra complication of manipulating Cheby-
shev polynomial expansions is well worth the bene�ts
realized.

The method of design does not produce an exact

equal-ripple response in the passband and stopband, but
the departure from exactness is extremely small, and the
result is quite comparable to that in any �lter produced
by using the Parks-McClellan algorithm, partly because
of the minor computational errors inherent in the latter.



2 DESIGN METHOD

In the hope that it will be easier to follow, we shall
describe the design in terms of a �lter of degree n =
7, writing the equations out in full. The extension to
the case for general n, where n may be any positive odd
integer, should be obvious. The transfer function H(z)
of a zero-phase half-band �lter is de�ned by

H = h7z
7 + h5z

5 + h3z
3 + h1z + h0 + h1z

�1 +

h3z
�3 + h5z

�5 + h7x
�7 (1)

= h0 + h1(z + z�1) + h3(z
3 + z�3) +

h5(z
5 + z�5) + h7(z

7 + z�7): (2)

By setting z = x+ jy = ej!; we can express H in terms
of the Chebyshev polynomials Ti(x) thus

H = h0 + 2h1 cos ! + 2h3 cos 3! + 2h5 cos 5! +

2h7 cos 7! (3)

= h0 + 2h1T1(x) + 2h3T3(x) + 2h5T5(x) +

2h7T7(x): (4)

By using the relation 2xTm = Tm+1 + Tm�1 one can
easily con�rm that (4) is equivalent to

H = h0 + 2x [b0 + b2T2(x) + b4T4(x) + b6T6(x)] (5)

where

2h1 = 2b0 + b2 2h5 = b4 + b6
2h3 = b2 + b4 2h7 = b6:

(6)

The useful approximation range of the Chebyshev poly-
nomials with variable x = cos ! is �1 � x � 1 which
corresponds to 0 � ! � �. But in this interval the
half-band �lter has to make parts of two disjoint equal-
ripple approximations; one of a passband having unit
value centered on ! = 0, and one of a stopband hav-
ing zero value centered on ! = �: The structure of H
for the half-band �lter, however, guarantees that if an
equal-ripple passband is created, then an equal-ripple
stopband will accompany it automatically. To simplify
the problem we therefore change the variable so that the
whole of just the passband occurs centrally in the ap-
proximation range of the Chebyshev polynomials in (5)
by changing the variable from x = cos! to y = sin!, so
that �1 � y � 1 corresponds to ��=2 � ! � �=2:
In the present application, where (5) contains Cheby-

shev polynomials of only even degree, changing the vari-
able from x to y is achieved very easily by virtue of the
relation

T2k(x) = (�1)kT2k(y)

which holds, as is the case here, when x2 + y2 = 1:
Applying this to (5) gives

H = h0 + 2
p
1� y2 [b0 � b2T2(y) + b4T4(y) �

b6T6(y)] (7)

= h0 + 2
p
1� y2P (y) (8)

where P (y) is an even polynomial of degree 6.

Over the interval �1 � y � 1 we want H to behave
as shown in Fig. 1 with an equal-ripple passband for
�� � y � �. At y = �1; ! = ��=2 and H = h0 = 0:5.
We �rst scale the variable y to a new variable t by y = �t

so that t = �1 corresponds to y = ��. Then

H = h0 + 2
p
1� �2t2 [a0 + a2T2(t) + a4T4(t) +

a6T6(t)] (9)

= h0 + 2
p
1� �2t2Q(t) (10)

is required to make an equal-ripple approximation to
unity over �1 � t � 1. Here Q(t) = P (�t).

Bearing in mind that h0 = 0:5, we approached this
by �rst making the polynomial Q(t) approximate f(t)
where

f(t) =
1

4
p
1� �2t2

: (11)

An approximation for Q(t) of degree n� 1 in t was ob-
tained by truncating a Chebyshev polynomial expansion
of f(t) in the hope that this would generate a Q(t) such
that Q(t)=f(t) would approximate unity in an equal-
ripple fashion. It was not possible to �nd an analytic
expression for the coe�cients of the Chebyshev polyno-
mial expansion of f(t); so they were found by standard
numerical methods involving sample values [3], [4] of
f(t). The number of sample points used had to exceed n

in order to generate the required number of coe�cients,
and it was found that, by using at least 2n points, these
coe�cients settled down to the values one would have
obtained by truncating an exact in�nite expansion.

At �rst it was assumed that using 2n points would
give the best choice for Q(t), and an analysis of the
passband response for this case certainly proved it to
be remarkably good. The response was almost exactly
equal ripple from zero frequency up to at least 75% of the
cut-o� frequency. Thereafter the ripple size decreased1

fairly smoothly until it was between �ve and eight per-
cent smaller at the cut-o�. Several simple methods of
modifying the coe�cients to improve the constancy of
the ripple size were tried out, but none proved helpful.
Finally, almost by accident, it was discovered that by
controlling the number of sample points to some value
between n and 2n the ripple size could be kept almost
exactly constant.

The optimum value for the number of sample points
proved to be that for which the ripple size at t = 1 most
nearly equalled the ripple size at t = 0. These two ripple
sizes can easily be found from the ak coe�cients of Q(t)

1In Chebyshev polynomial approximations, the ripple size nor-
mally tends to increase near the band edges, even without help
from the Gibbs phenomenon due to discontinuities. Here, the

ripples in the approximation of f(t) by Q(t) do increase in size
near the band edges, but the increase there in the value of f(t)

proves more than enough to o�set this when we form the quotient
Q(t)=f(t), causing the resulting H to behave as described.



in (9) and the values (�1) of the Chebyshev polynomials
at t = 1 and at t = 0: Speci�cally

Q(1) = a0 + a2 + a4 + a6 (12)

and
Q(0) = a0 � a2 + a4 � a6 (13)

and the ratio of the magnitudes of the ripple sizes at
t = 1 and at t = 0 is then

����
Q(1)=f(1) � 1

Q(0)=f(0) � 1

���� : (14)

As one increases the number of sample points from n to
2n, the quantity in (14) decreases monotonically from
a value greater than unity to a value less than unity,
and the object is to �nd the number of sample points
corresponding to the value nearest to unity.
The calculation of the ak coe�cients in (9) is the cen-

tral part of the design and the most intensive computa-
tional step. The general formula for the ak is

ak =
2

m

mX

i = 1

f(cos �i) cos k�i where �i =
(2i � 1)�

2m

(15)
and m is the number of sample points whose optimum
value we seek. As is customary in this theory, the value
of a0 is one half that given by (15). Here, f(t) is an
even function of t, so one can reduce the number of
terms in the summation from m to m=2 if m is even
or to (m + 1)=2 if m is odd. To compensate for this,
all terms in the summation are doubled except, when
m is odd, for the one term corresponding to t = 0, i.e.
i = (m+ 1)=2, for which �i = �=2:
Finding all the separate ak by (15) in each step of the

search for the best m, merely to get the two linear com-
binations of them needed in (12) and (13), proves rather
wasteful. If one forms the appropriate sum, with respect
to k, of the right-hand sides of (15), corresponding to
(12) or (13), and interchanges the order of the two sum-
mations, then the inner sum, containing just the cosines,
can be evaluated analytically. Thus, in general, for (12)
we get

1

2
+ cos 2�i + cos 4�i + : : : + cos 2q�i =

sinn�i
2 sin �i

(16)

and, for (13)

1

2
� cos 2�i+ cos 4�i � : : : (�1)qcos 2q�i = (�1)q

cosn�i
2 cos �i

(17)
where 2q = n� 1 is the degree of the polynomial Q(t).
Note that the �rst term in both (16) and (17) corre-
sponds to the factor of 1/2 associated with the coe�-
cient a0 mentioned above. When �i = �=2, the right-
hand side of (17) becomes indeterminate through the
vanishing of both numerator and denominator, but the

quotient of their derivatives then gives the value of the
right-hand side as n=2. For this same argument, the
right-hand side of (16) also simpli�es, to (�1)q=2. This
approach reduces considerably the e�ort required to �nd
the quantity in (14) and hence the optimum value of m.
The search itself is most simply achieved by using the
bisection method [3].
After �nding the optimum number of sample points

one can then compute the separate ak coe�cients using
(15). The next step is to change the variable in (9) from
t back to y and so obtain the form given in (7), i.e. to
�nd the bk from the ak. The obvious, simple way of
doing this is to form the regular polynomial equivalent
of the expansion in the Ti(t) in (9), scale the variable
from t to y and then reform it as an expansion in the
Ti(y). But in all practical cases where n is fairly large,
this method becomes very ill conditioned and leads to
errors in the bk. To avoid this one has to deal, all the
time, with coe�cients of Chebyshev polynomials, never
resorting to regular polynomial equivalents at any stage.
A method of doing this, applicable to the more general
case with Chebyshev polynomials of both odd and even
degree, was derived and is described in the APPENDIX.
When the bk in (7), and therefore in (5), have been found
by this algorithm it is then a trivial matter to �nd the
hk via the formulas in (6), and the design is completed.

3 NUMERICAL EXAMPLE

Our �lter example is required to have fc = 0:24 and
provide not less than 60 dB stopband loss. By exper-
imenting with a few values of n one quickly �nds that
a suitable value is 83. This gives a stopband loss of
61.04 dB and a passband ripple of 0.015 dB. The hk
coe�cients, preceded by other relevant data including
the number of samples used in the calculation of the ak
coe�cients, are all shown in Fig. 2, which is the output
of a Fortran program we have written to implement our
algorithm.
We have also determined the extent to which the pass-

band and stopband deviate from the ideal equal-ripple
response. Over the �rst half of the passband the maxima
and minima are exactly equal, to four decimal digits, at
�0:0008872: Near the passband edge the maxima and
minima depart slightly from this value, though never by
more than 0.3 %. With a ripple size of 0.015 dB this de-
parture is completely insigni�cant. The minimum loss
achieved over the stopband departs from the quoted �g-
ure of 61.0395 dB by less than 0.026 dB.

4 APPENDIX

We assume that we are given a polynomialQ(t) of degree
n expressed as a Chebyshev polynomial expansion thus

Q(t) = anTn(t)+an�1Tn�1(t)+an�2Tn�2(t)+: : : (A1)

and that we wish to change the variable from t to y,
where t = �y, so that the interval �� � t � � trans-



forms to �1 � y � 1: The parameter � is the recipro-
cal of the quantity � used in the paper in the relation
y = �t. Q(t) can then be rewritten

Q(�y) = P (y)

= bnTn(y) + bn�1Tn�1(y) + bn�2Tn�2(y) + : : :

(A2)

Given the ak and the parameter �, the problem is to
�nd the bk.
Each Tk(t) = Tk(�y) in (A1) is an even or an odd

polynomial in y and can be expressed as a linear com-
bination of the Ti(y) (i � k) of like parity thus

Tk(�y) = dk;kTk(y) + dk�2;kTk�2(y) +

dk�4;kTk�4(y) + : : : (A3)

where the last term is d0;kT0(y) if k is even, or d1;kT1(y)
if k is odd.
The di;j are polynomials of degree j in the parameter

� and are the elements of an upper-triangular matrixD
(0 � i � j � n). If we de�ne the (n+1)-vectors a and b
whose components are the ak and bk, (0 � k � n) then
b = Da. We can compute the di;j via a recurrence
relation derived from that between three adjacent Ti
polynomials, namely

Tk(�y) = 2�yTk�1(�y) � Tk�2(�y): (A4)

Expressing the Ti(�y) in terms of the di;j and the Tj(y)
as in (A3), and using

2xTj = Tj�1 + Tj+1 (A5)

we get the recurrence

di;j = �(di�1;j�1 + di+1;j�1) � di;j�2: (A6a)

A special case occurs when i in (A6a) is unity. Then
one must use instead

d1;j = �(2d0;j�1 + d2;j�1) � d1;j�2: (A6b)

By creating the matrix D column by column, starting
with d1;�1 = � and d0;0 = 1 and using (A6), one can
build up the bi in (A2) successively from each aj in turn
as the di;j from the j-th column are found.
In applying this algorithm to getting the polynomial

P from the polynomialQ in the paper, the two vectors a
and b would have nonzero entries only in the even sub-
script locations and, as noted previously, the parameter
� would be equal to 1=�.
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