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ABSTRACT

Interpolation filters are used to interpolate new sample
values at arbitrary time instants between the existing dis-
crete-time samples. Interpolation filters utilizing polyno-
mial-based interpolation can be efficiently implemented
using the Farrow structure. This paper introduces a new
method for designing Farrow-structured interpolation fil-
ters. The proposed synthesis method is based on the
relationship between the Farrow structure and the Taylor
series of the interpolating continuous-time signal formed
based on the existing sample values.

1. INTRODUCTION

Interpolation filters (or interpolators) are used to
interpolate new sample values at arbitrary points between
the existing discrete-time samples. The applications of
these filters include; echo cancellation in modems [1],
symbol synchronization in digital receivers [2]−[4], and
arbitrary sampling rate conversion [5]−[6].

One alternative for implementing an interpolation filter
is to use an FIR filter to delay the input samples by
D = Dint+µ, where Dint is an integer delay determined by
the length of the filter and µ ∈ [0,1) is the fractional delay
(or fractional interval). In order to be able to generate new
samples at arbitrary time instants, the fractional delay of
the filter should be adjustable. In this case, the filter coeffi-
cients can be precalculated for each value of the fractional
delay and can be stored in the coefficient memory. Because
the size of the memory becomes usually very large, this
technique is not very useful.

A very efficient way to get around this problem is to use
polynomial-based interpolation filters where a polynomial
approximation is calculated for each sample interval. The
sample values at desired time instants are then obtained by
evaluating the corresponding values of these polynomials.
The main advantage of using polynomial-based interpola-
tion is that it can be efficiently implemented using the so-
called Farrow structure [1]. This discrete-time filter struc-
ture consists of FIR branch filters having fixed coefficient
values. The interpolated samples are obtained by weighting
the output samples of these FIR filters by the fractional in-
terval µ.

In many applications of digital signal processing (DSP),
it is desired to know the frequency-domain behavior of the
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Fig. 1.  The hybrid analog/digital model for the interpolation
filter.

interpolator, in addition to its time domain behavior. This
can be done conveniently by analyzing the Farrow
structure by using an equivalent hybrid analog/digital
model. In this model, the digital input sequence is first
converted to weighted analog impulses by using a digital-
to-analog (D/A) converter. This sequence of weighted
impulses is then filtered by a continuous-time anti-imaging
filter. Finally, the interpolated sample values are obtained
by sampling this reconstructed analog signal at any desired
time instants.

In this paper, a new method for designing polynomial-
based interpolation filters is introduced. This method is
based on the relationship between the Taylor series of the
approximating continuous-time signal and the Farrow
structure as introduced in [7]. It enables us to design the
FIR filters in the Farrow structure separately. Because
these FIR filter are linear-phase filters, they can be easily
designed by using, e.g., the Remez algorithm.

2. IMPLEMENTATION OF POLYNOMIAL-BASED
INTERPOLATION FILTERS

The polynomial-based interpolation methods are tradition-
ally considered as time-domain procedures, where some
approximating polynomial is fitted to the data and then
this polynomial is evaluated at the desired time instants to
get the interpolated sample values.

However, in DSP applications, our signal is not a prede-
fined deterministic function and, therefore, a time-domain
analysis is not very informative. What is known about the
signal is its frequency band of interest. Consequently, the
interpolation should be considered as a filtering problem in
the frequency domain.

This can be done by using the hybrid analog/digital
model for the interpolation filter as shown in Fig. 1 [5]−
[6]. In this model, the digital input sequence x(k) is first



converted to a sequence of weighted analog impulses ua(t)
which are filtered by a lowpass anti-imaging filter with an
impulse response ha(t). After that, the reconstructed analog
signal ya(t) is resampled at the desired time instant deter-
mined by t = (k+µ)Ts to obtain the output sample y(k,µ).
Here, µ ∈ [0,1) is the fractional interval and k is any
integer. Assuming that the impulse response of the anti-
imaging filter ha(t) is non-zero only in the interval
0 ≤ t ≤ NTs, the desired output sample is given by
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where Ts is the sampling interval of the input signal x(k). It
is desired that the delay of the anti-imaging filter, which is
equal to NTs/2, is a multiple of the sampling interval Ts.
Therefore, N has to be even.

The use of the hybrid analog/digital structure for imple-
menting interpolation filters is not very practical due to the
need of analog anti-imaging filter, and D/A- and A/D-con-
verters. Fortunately, there exist more efficient digital im-
plementation structure, the so-called modified Farrow
structure [8], which is equivalent to the hybrid model in
Fig. 1. The connection between the original Farrow
structure and the hybrid analog/digital model has been
derived in [3]. The basic assumption for deriving the
modified Farrow structure is that the anti-imaging filter
ha(t) = ha((n+µ)Ts) for n = 0, 1,..., N−1 and for µ ∈ [0,1) is
a piecewise polynomial in (2µ − 1) and is, therefore,
expressible as
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where the cl(n)’s are the polynomial coefficients and L is
the degree of polynomials. By substituting Eq. (2) into Eq.
(1), the interpolated output sample can be given by
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are the output samples of the FIR branch filters having the
following transfer functions:
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The corresponding filter structure is shown in Fig. 2.
In the original Farrow structure [1], the basis function is

µ, instead of (2µ − 1). The advantage of using (2µ − 1) is

that the coefficients of the corresponding FIR filters Cl(z)
are always symmetrical, which is not generally true for the
Farrow structure. The equation to translate the coefficients
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Fig. 2.  The modified Farrow structure.
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Fig. 3.  Polynomial-based impulse response ha(t) for the minimax
interpolation filter.

of the original Farrow structure to the coefficients of the
modified Farrow structure has been given in [9].

The filter coefficients for the Farrow structure can be
obtained, e.g., using the Lagrange interpolation [3] or the
minimax design [8]. The Lagrange interpolation is a con-
ventional time-domain approach, whereas the minimax de-
sign optimizes the coefficients of the Farrow structure di-
rectly in the frequency domain. A combined time-fre-
quency-domain approach has been introduced in [7].

As an example, Fig. 3 shows a polynomial-based
impulse response ha(t) for the interpolation filter being
designed using the minimax synthesis method. The filter
specifications are: the filter length is N = 8, the degree of
the interpolation is L = 3, and the passband and stopband
edges are at 0.35Fs and 0.65Fs, respectively. Here, Fs = 1/Ts

is the sampling frequency.
The continuous-time frequency responses Ha(j2πf) for

this minimax and the cubic Lagrange interpolation filters
are shown in Fig. 4. For the Lagrange filter, L = 3 and
N = 4.

3. FILTER DESIGN BASED ON TAYLOR SERIES

The synthesis technique to be introduced in this paper en-
ables us to design FIR branch filters in the modified



Farrow structure separately. Furthermore, because these
FIR filters are linear-phase filters, they can be easily
designed by using almost any existing algorithm proposed
for synthesizing linear-phase FIR filters.

The derivation of the desired responses for the FIR
filters with the transfer functions Cl(z) is based on two
facts:

1. The FIR filters Cl(z) for l = 0, 1,..., L in the Farrow
structure form an Lth order Taylor series
approximation to the continuous-time interpolated
signal xa(t) [7].

2. In the modified Farrow structure, the FIR filters Cl(z)
are linear-phase Type II filters when l is even and
Type IV filters when l is odd [8].

We derive the desired responses for the FIR filters by
first studying the amplitude responses |Cl(e

jω)| of the
above-mentioned minimax interpolation filter. These
responses |Cl(e

jω)| for l = 0, 1, 2, and 3 are shown in Fig. 5.
As can be seen, they approximately follow the curves klω l,
where the kl's are some constant. This shape of the
amplitude responses |Cl(e

jω)| seems to be a feature of other
interpolation filters as well, like Lagrange interpolators.
This means that the FIR filter with transfer function Cl(z)
in the Farrow structure is an l th order differentiator [recall
that the ideal frequency response of the l th order
differentiator is (jω)l ].

The fact that the FIR filters Cl(z) for l = 1, 2,..., L are l th

order differentiators and C0(z) is an all-pass filter can be
explained by using the Taylor's theorem. The relationship
between the Taylor series and the original Farrow structure
has been introduced in [7].

Taylor's theorem states that if the function f(µ) has L+1
continuous derivatives on the interval µ ∈ [0, 1], then it can
be approximated by the following Lth degree polynomial:
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where f (l)(0) is the l th degree derivative of f (µ) at µ = 0.
The approximation error is defined by the remainder term
RL+1(µ) (see any numerical-analysis textbook).

In the modified Farrow structure, the polynomial ap-
proximation can be formed in the similar manner to the
Taylor series approximation. This can be done by using the
linear-phase FIR filter transfer function Cl(z) to calculate
the lth order differential of the input signal. This
differential, denoted by vl(k) (see Fig. 2), is then used to
approximate the lth order derivative of the original
continuous-time signal xa(t) at t = (k+µ)Ts. The derivative
is determined at µ = 0.5 because the filter lengths are even
and, therefore, the differential is always calculated in the
middle of two existing input samples.

Because the frequency response of the ideal l th order
differentiator is (jω)l , the desired frequency response for

the FIR filter with transfer function Cl(z) takes, after some
manipulations, the following form:
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Here, the term 2l in the denominator and −1 inside the pa-
renthesis are due to the fact that for the modified Farrow
structure 2µ−1, instead of µ, is used [compare Eqs. (3) and
(6)].
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Fig. 4.  Continuous-time frequency responses for the minimax
(solid line) and cubic Lagrange (dashed line) interpolation filters.
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Fig. 5.  Amplitude responses |Cl(ej2πf/Fs)|| of the FIR filters in the
Farrow structure. The minimax design in the previous section

(solid line) and the desired responses (dashed line).

These desired responses | $ ( )|C el
jω  for l = 0, 1, 2, and 3 are

shown in Fig. 5
For the proposed design procedure, the input parameters

are N, L, Fs , and fp = αFs/2 with α < 1, the passband edge
of the interpolator filter. Since the FIR branch filters are
linear phase filters, the design involves finding the
coefficients of the L+1 transfer functions Cl(z) in such a
way that the following error function:
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is minimized in either the minimax or least-mean-square
sense on [0, απ]. Here, D(l,ω) = (−1)3l/2 ω l/(2ll!), where x



stands for integer part of x, and γ(l,n,ω) = 2cos[(n+1/2)ω)]
for l even and γ(l,n,ω) = 2sin[(n+1/2)ω)] for l odd. The
region [απ, π] is considered as a don’t care band. Note that
for l even cl(N−1−n) = cl(n) and for l odd cl(N−1− n) = −
cl(n).

The coefficients of the transfer functions Cl(z) can be
found directly in the minimax or least-mean-square sense
using in MATLAB the routine remez.m or firls.m, respec-
tively. However, the routine remez.m has to be modified in
such a way that the desired function becomes D(l,ω) = (−
1)3l/2 ω l/(2ll!).

4. DESIGN EXAMPLES

To exemplify the use of the above-mentioned method, we
consider the design of a polynomial-based interpolation
filter with the following parameters: N = 8, L = 5,
fp = 0.7Fs/2 (α = 0.7).

The Cl(z)'s for l = 0, 1,…, 5 have been designed in the
least-mean-square sense using the routine firls.m in
MATLAB. The amplitude responses |Cl(e

jω)| for l = 0, 1,…,
5 are shown in Fig. 6. The polynomial-based impulse re-
sponse ha(t) and the continuous-time frequency response
Ha(j2πf) for the interpolation filter are shown in Figs. 7
and 8, respectively. Note that the use of the don’t care band
when designing the transfer functions Cl(z) causes don’t
care bands also to the continuous-time frequency response
of the interpolation filter. These bands are given by
[nFs+fp, (n+1)Fs−fp] for n = 1, 2, 3,…, where fp is the
passband edge.
If the highest frequency component of the signal under
consideration is less than or equal to 0.35Fs, then there is
no aliasing from these bands.

5. CONCLUSIONS

A new synthesis technique for polynomial-based
interpolation filters was presented. In this technique, the
linear-phase Type II and Type IV FIR filters in the
modified Farrow structure are designed separately.
Consequently, the design of the interpolation filter reduces
to the design of L+1 linear-phase FIR filters.
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Fig. 6.  Amplitude responses |Cl(ej2πf/Fs)| for the FIR filters Cl(z)
for l = 0, 1,…, 5 (solid line) and the ideal responses (dashed

line).
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Fig. 7.  Impulse response ha(t) for the interpolation filter.
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Fig. 8.  Frequency response Ha(j2πf) for the interpolation filter.


