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ABSTRACT

The problem of perfect reconstructing non-uniformly down-
sampled �lter banks is considered using frame theory and
�lter bank theory. This problem can be reformulated to a
uniformly downsampled �lter bank thus allowing the usual
analysis. Of special interest are those �lter banks where the
output of the analysis bank has a direct interpretation e.g.,
the sliding-window Fourier transform or the wavelet trans-
form. The concept of the sliding-window Fourier transform
can be extended by replacing the Fourier transformation by
an arbitrary unitary transformation. As an example the
sliding-window Kautz transformation is considered.

1 INTRODUCTION

Filter banks can be used for many applications, e.g. signal
coding and compression, multi-resolution and wavelet anal-
ysis [1]. In order to be able to tailor the �lter bank to the
application at hand, it is desirable to have a theory as gen-
eral as possible. Therefore, we �rst consider rather arbitrary
�lter banks (causal and stable) followed by arbitrary down-
samplers. In this way we have the desired exibility in choice
of the �lter bank and the possibility to deal with issues as
signal quantization noise and coe�cient quantization.
While on the one hand one requires maximal exibility in

design, it is often desired to have insight in the representation
of the signal as is given by the output of the analysis bank.
This is for instance the case if the �lter bank implements
a sliding-window Fourier transform or the analysis agrees
with a wavelet representation. We argue that next to the
concept of a sliding-window Fourier transformations, other
sliding-window unitary transformation can be valuable as
well. This is illustrated by an example, the sliding-window
Kautz transformation.

2 ANALYSIS BANK

Consider the analysis bank shown in Fig. 1 consisting of the
L �lters with impulse responses fl(n) (l = 1; � � � ; L) cascaded
with the downsamplers Ml. The input signal is called x and
the output signals are called yl (l = 1; � � � ; L) and these out-
put signals each have their speci�c sample frequency fs=Ml

with fs the sample frequency of the input signal x.
The �lters fl are assumed to be stable, i.e. fl 2 `1, and

causal. The �lters are of the FIR or IIR type: the z-
transform of fl is a rational function of z. Furthermore,
we take L <1 and Ml a positive integer.
For the output signals we can write

yl(k) =
X
n

x(n)fl(kMl � n) = hx; �kMl �f
l
i (1)
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Figure 1: Non-uniformly downsampled analysis bank

where denotes conjugation,�denotes time reversal and � is
the shift operator.

From frame theory [2] we know that the reconstruction of
the signal x is possible if and only if the setn

�
kMl �f

l
jl = 1; � � � ; L; k 2 Z

o
(2)

constitutes a frame in `2, i.e.,

9A>0;B>08f2`2 Ajjf jj
2 �

X
l;k

jhf; �kMl �f
l
j2 � Bjjf jj2 : (3)

It is in general not easy to check whether a given �lter bank
constitutes a frame using the previous condition. We will
derive a more direct way to evaluate this later on.

A necessary condition to obtain a frame from this analysis
bank is that

P
l
1=Ml � 1. This is intuitively clear since

otherwise the data stream per unit of time at the output
of the analysis bank is less than that at its input. This
condition will be proved more rigorously later.

In general, the reconstruction is not unique. We have a
unique reconstruction if and only if the set (2) constitutes a
Riesz basis in `2 in which case we have

P
l
1=Ml = 1.

If the system f�kMl �f
l
jl = 1; � � � ; L; k 2 Zg is a frame, we

can reconstruct the signal x using the frame operator S

Sx =
X
l;k

hx; �kMl�f
l
i�kMl�f

l
=
X
l;k

yi(k)�
kMl�f

l
(4)

which is invertible and the reconstruction becomes

x =
X
l;k

yl(k)S
�1
�
kMl�f

l
: (5)
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Figure 2: Equivalent uniformly downsampled �lter bank

In general, the computation of S�1 is not simple. To solve
this problem, one uses the Neumann series [2] to approximate
S�1. This series is given by

S�1 =
2

B +A

1X
k=0

(I �
2

B +A
S)

k
; (6)

where A, B are the frame bounds. A good approximation
of S�1 is obtained if A � B and taking many terms in the
Neumann series.

The stability in the frame concept means that a frame
yields a well-conditioned reconstruction. This is reected in
the fact that the frame operator is bounded and bounded
from below.

What we really would like is that we can reconstruct the
signal x (or a delayed version thereof) using causal and stable
�lters. This is by no way guaranteed if (2) is a frame: if the
reconstruction exists this means that we can do the recon-
struction using pattern functions in `2 but this is insu�cient
for our goals.

3 EQUIVALENT UNIFORMLY DOWN-

SAMPLED FILTER BANK

From (18) it is clear that, given the analysis bank, there is
only freedom of choice in the reconstruction in the form of
K0 if we have oversampling. We can redraw the analysis
bank of Fig. 1 as is shown in Fig. 2 where M is the smallest
integer having Ml as its divisors. If we draw a time-channel
grid indicating the sampling instants at the output of the
analysis bank, M is the number on the time-axis after which
the sampling pattern repeats itself. Note that the part left
of the dashed line in Fig. 2 consists of causal �lters. We con-
sider now the reconstruction of this uniformly downsampled
analysis bank.

First we introduce the necessary variables. We have the
outputs of the analysis �lter by yl;j(k) =

P
n
x(n)fl(nM �

(j � 1)Ml � n) for l = 1; � � � ; L, j = 1; � � � ;M=Ml. Next we
have the input and output vector signals denoted by

x(n) = (x(nM); x(nM � 1); � � � ; x(nM �M + 1))
t
(7)

y(n) = (y1;1(nM); y1;2(nM); � � � ; yL;M=ML
(nM))

t
(8)

for n 2 Z (t denotes transposition) and, lastly, the analysis
matrices de�ned by

fA(m)g
n;i

= fl(mM � (j � 1)Ml + i� 1); (9)

where m 2 Z, i = 1; � � � ;M , n = j +
P

l�1

k=1
M=Mk, l =

1; � � � ; L and j = 1; � � � ;M=Ml. Note that A(m) is causal:
A(m) = 0 for m < 0. The matrix sequence A(m) is no
more than a stack containing the impulse responses of the
�lters of Fig. 2. The matrix A has dimensions ~M �M with
~M =

P
L

l=1
M=Ml. From these de�nitions we can write the

processing in the analysis bank as a convolution

y(n) =
X
k�n

A(n� k)x(k): (10)

Note that we used the causality of the analysis bank.
Now we give the de�nition of �nite-order �ltering in the

multidimensional case.

De�nition An input-output relation of the form (10) is
said to be of �nite order with order N if there exist
B0; B1; � � � ; BN in C

~M�M and C1; � � � ; CN in C
~M� ~M such

that

y(n) =

NX
k=0

Bkx(n� k)�

NX
k=1

Cky(n� k): (11)

The following theorem tells us when A leads to �nite-order
�ltering.
Theorem An input-output relation of the form (10) leads
to �nite order �ltering with order N if and only if there exist
(Dm)m=1;���;N such that

A(m) =

NX
k=1

DkA(m� k); for m > N: (12)

Expressed in the notation of (11) we have

Bm = A(m)�

mX
k=1

DkA(m� k); (13)

Cm = �Dm: (14)

Remark: one can prove that we have a �nite-order �ltering
if and only if the �lters fl are of the FIR or IIR type.
For a �nite-order �ltering we have the relation (11). In

the z-domain this can be written as 
I +

NX
k=1

z
�k
Ck

!
ŷ(z) =

 
NX
k=0

z
�k
Bk

!
x̂(z); (15)

where ^ denotes the z-transform of the pertinent variable.
The analysis bank is stable if and only if the zeros of det(I+P

N

k=1
z�kCk) are within the unit circle. This last holds if

and only if the �lters fl are stable which was assumed from
the outset.
To test if the system f�kMl �f

l
jl = 1; � � � ; L; k 2 Zg con-

stitutes a frame in `2(Z) we can use the polyphase matrix
H(z) of the analysis bank [1] de�ned by

fH(z)g
n;i

= (
i�1
M

z)(j�1)Ml f̂l(

i�1
M

z) (16)



where n = j+
P

l�1

k=1
M=Ml, 
M = ej2�=M , i = 1; � � � ;M , and

j = 1; � � � ;M=Ml. The system f�kMl �f
l
jl = 1; � � � ; L; k 2 Zg

is a frame in `2(Z) if and only if there exist A > 0, B > 0
such that

AI � H
h
(z)H(z) � BI; (17)

for all z on the unit circle with 0 � arg(z) � 2�=M (h denotes
Hermitian transposition). From this we can immediately

infer that a necessary condition is that ~M � M and thusP
l
1=Ml � 1.

4 SYNTHESIS BANK

Consider (15). It is clear that there is a perfect reconstruc-
tion if B0 is injective. For a stable perfect reconstruction

it is required that the zeros of det(I +
P

N

k=1
z�kK0Bk) are

within the unit circle, whereK0B0 = I. If both requirements
are met we have a causal stable perfect reconstruction by

x(n) = K0

"
y(n) +

NX
k=1

Cky(n� k)

#
�

NX
k=1

K0Bkx(n� k)

(18)
or, in the z-domain, the synthesis �lter is given by

Ŝ(z) =

 
I +

NX
k=1

z
�k
K0Bk

!�1
K0

 
I +

NX
k=1

z
�k
Ck

!
:

In general, including the non-causal case, K0 is non-
unique. Only in the critically sampled case the reconstruc-
tion is unique. In the oversampled case we can use e.g. the

pseudo-inverse of
P

N

k=0
z�kBk which agrees with the min-

imal dual frame of the frame associated with the analysis
bank. However, the pseudo-inverse is not necessarily causal.
Given the analysis bank and the downsampling scheme

(thus B(m) and C(m)) and requiring causal reconstruction,
we only have freedom to choose K0 under the constraint
K0B0 = I.

5 OVERSAMPLING

That the reconstruction is non-unique in the oversampled
case has several advantages. We can exploit this non-
uniqueness for instance to obtain simple reconstruction �l-
ters in terms of the number of operations required to do
the reconstruction, for minimizing (or shaping) the noise in
the reconstructed signal caused by the noise usually intro-
duced on the signal y(k) or to reduce the coe�cient sensitiv-

ity [3, 4, 8].
We can write the reconstructed signal r by the causal re-

construction formula

r(n) =

1X
k=0

Sky(n� k) (19)

with the de�nition of r(n) similar to (7) and where Sk are the
reconstruction matrices. The noise power �2r in the recon-
structed signal r caused by additive white noise with vari-
ance �20 introduced at the output of the analysis bank (i.e.,
on yl;j) can be simply written in terms of these matrices as

�
2
r =

�20
M

1X
k=0

trace fSkS
h

k g: (20)

This form is especially suitable if the reconstruction is of the
FIR-type.

6 EXAMPLES

A special and attractive case of �lter banks is formed if the
behaviour of the analysis bank can be easily interpreted.
For instance, this is the case if the outputs y is the sliding-

window Fourier transform (SWFT) of x or a wavelet trans-
form (WT). In that case the index l (l = 1; � � � ; L) associated
with the �lters immediately takes on a physical interpreta-
tion in terms of a center frequency (SWFT) or a scale (WT).
Thus the time-channel grid becomes a time-frequency grid
(SWFT) or a time-scale grid (WT).
The idea of a sliding-window Fourier transform can be

extended to a sliding-window unitary transformation [5, 7].
As a speci�c example we consider the Kautz transformation.

De�nition [Kautz system] [6] Let (�j)j2N be a sequence
within the unit circle where the �j 's are not necessarily dis-

tinct. De�ne the natural number nj by nj =
P

j�1

l=1
��j ;�l

(� is the Kronecker delta). Let fj 2 `2(N0 ) be de�ned

as fj(k) =
�
k

nj

�
�kj , k 2 N0 , j 2 N. The Kautz system

fgj jj 2 Ng is the result of the Gram-Schmidt orthonormal-
ization procedure applied to ffj jj 2 Ng.

The Kautz system is complete in `2(N0 ) under the Sz�asz
condition

P
1

j=1
(1� j�j j) =1.

De�nition [7] The causal sliding-window Kautz transform
(SWKT) is de�ned by

(Gwx)(k; l) =
X
j�0

x(j + k)w(�j)gl(�j); k 2 Z; l 2 N;

with w 2 `1(Z) and causal.

The simplest case of a sliding-window Kautz transforma-
tion occurs if the window function is a causal exponential
sequence. Furthermore, we take the �rst L basis functions
of the Kautz system with arbitrary poles �l.

Theorem For the SWKT based on a causal exponential
window, the �rst L basis functions of the Kautz system with
arbitrary poles �l, and an arbitrary non-undersampled and
non-uniform downsampling, there exists a causal stable syn-
thesis bank which is of �rst-order FIR (in the downsampled
domain).

In terms of the previous notation we have N = 1 and
A(m) = C1A(m� 1) for m � 1.
We thus have that the SWKT has an local energy interpre-

tation, and that the poles �l and the subsampling grid can be
chosen freely. Furthermore, the noise analysis is quite simple
as consequence of the �rst-order reconstruction, namely

�
2
r =

�20
M

trace fK0(I + C1C
h

1 )K
h

0 g: (21)

The causal reconstruction for which �2r is minimal is called
the minimal causal dual frame and is attained for K0 =
(Bh

0 (I + C1C
h

1 )
�1B0)

�1Bh

0 (I + C1C
h

1 )
�1 [9].

Consider the Kautz transformation with poles as shown
in Fig. 3. The ordering of these poles is taken in order of
increasing radius. Consequently, the �rst �lter in the win-
dowed Kautz analysis bank has the broadest bandwidth and
complex-conjugated poles occur sequentially. The parame-
ter of the exponential window sequence is indicated by the
circle.
In Fig. 4 we have plotted the amplitude transfers of the

�lters performing the windowed Kautz transformation as de-
�ned by the poles and window parameter of Fig. 3.
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Figure 3: The poles of the Kautz transformation (crosses)
and window parameter (circle).
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Figure 4: Amplitude transfers of the analysis bank.

In principle, we can select a quite arbitrary downsampling
scheme in cascade with the analysis bank. For perfect recon-
struction we require critical sampling or oversampling.

As an example we take the downsampling scheme as shown
in Fig. 5 in the form of a time-frequency grid. Horizontally
we have the time-axis and vertically the center frequencies of
our analysis �lters. The channel index number is shown on
the right. The crosses indicate the samples taken after the
analysis. The downsamplers per channel are taken (nearly)
inverse proportional to the bandwidth with the restriction
of a repeating sampling pattern after 24 samples (M = 24).
There are 25 samples within the fundamental cell of length
24, which means there is a slight oversampling with a factor
25/24. Note that the time-frequency grid is similar to that
in the wavelet case.

As stated earlier, the reconstruction is of �rst-order FIR in
the downsampled domain. This means we have to determine
two matrices (S1 and S2) of size 24 � 25 to do the recon-
struction. These matrices were determined numerically.
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Figure 5: Time-frequency grid.

Other time-frequency grids are possible as well. We could
use for instance a uniform downsampling scheme with deci-
mators with factor 8 after each analysis �lter. We still have
perfect reconstruction by �rst-order FIR, but now the two
reconstruction matrices are of size 8 � 8. Uniform down-
sampling gives the minimum possible delay. However, such
scheme is not attractive from the point of view of additive
noise. Noise (e.g. signal quantization noise) introduced at
the output of the analysis bank results in more noise power
(nearly a factor 5 in this example) in the reconstruction for
the uniform downsampling scheme than for the downsam-
pling scheme of Fig. 5.

7 DISCUSSION

We have reviewed concepts from frame theory and �lter bank
theory. By an example we have shown that the sliding win-
dow Fourier transformation can be extended to arbitrary
sliding-window unitary transformation. The elegance of the
considered unitary transformation is its simple implementa-
tion of both the analysis and synthesis bank and its large
degree of freedom of choosing a time-frequency grid.
For good numerical properties, i.e., immunity to signal

quantization noise and coe�cient quantization, the proper
choices of the poles in the Kautz transformation and the
time-frequency grid are undoubtedly interconnected. This
issue has to be explored further.
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