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ABSTRACT
This papers deals with supervised texture classification.
The extracted features are the image second and third
order moments. The number of possible moment lags for
2-D signals increases rapidly with the order of the moment
even for small lag neighbourhoods. The paper focuses on
the selection of moment lags that optimise classification
performance. Lag selection also serves another purpose: it
waives us from the trouble of calculating a large number of
moments every time a new sample is to be classified. Lag
selection is performed by a full stepwise feature selection
method using four different feature evaluation measures.
The selected moments are driven to four classifiers and
comparative classification results are obtained.

1  INTRODUCTION

Texture classification is an important task in various
image processing problems, ranging from large scale
satellite images to microscopic images used in medical
applications. Classification is usually performed on a
feature vector extracted from the images. Different kinds
of features have been proposed in the literature for this
task, including cooccurrence matrices, Gabor filtering,
autoregressive models and fractals. In this work, we use
the image second and third order moments as features for
classification. A few relevant approaches are reported in
the literature ([1],[2],[3],[4]). Second order statistics have
been generally used for 'clean' signal classification
whereas third order statistics perform favourably on
signals corrupted by noise. In this paper, we do not
examine images corrupted by noise. Instead, we focus our
attention on both second and third order moment lag
selection. The issue has been touched by [1] and [3]. Our
approach is more thorough and gives favourable results.

2  FEATURE EXTRACTION

We use as features two sets of the image moments. The
second and third order moments of a 2-D stationary
stochastic signal f x( )

r  are respectively defined as:
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<⋅> denotes the ensemble average operator. Under the

assumption of ergodicity, the above formulae hold for
space averages too. For zero mean random fields, moments
and cumulants up to the third order are identical. In the
following analysis we will use both terms with the same
meaning.

With some similarity to [1], we choose as our first set of
features all second order moments with lags r

x 1
, so that

− ≤ ≤4 41 1x xx y, . Taking into account that

permutation of lags does not change the value of the
moments of any order, we reduce to 41 second order
moments.

It is well known that third order cumulants are
insensitive to additive gaussian (or any other symmetrical)
noise. However, noise insensitivity is not satisfied by
moments with more than one pixels at the same position.
In this work, we will not use any additive noise on our
images, that is, we will only process 'clean' images, but we
still impose the noise insensitivity restrictions so that our
features can be used in the future when we deal with
images corrupted by noise.

We use as a second feature set all third order moments
with lags − ≤ ≤3 31 1 2 2x x x xx y x y, , , . If we remove

redundancies arising from symmetries in the relative
positions of the pixels and we also impose the noise
insensitivity restrictions, we reduce to a set of 720 third
order moments.

Third order cumulants can be also estimated through the
bispectrum. This approach reduces the computational time
enormously but on the other hand needs a huge memory to
store the resulting complete 4-D third order correlation
function. There are ways to circumvent this difficulty on
the price of worsening the estimation accuracy, but we will
not present the analysis here due to space limitations.

Within each estimation block (section 5), second order
moments are normalised by the variance to get the
autocorrelation coefficient. After normalisation, the
moment with zero lags in both image directions becomes
one so it does not offer any information and is discarded
from the set. We therefore render to 40 second order
moments.

Third order moments are similarly normalised by the
third order moment with zero lags, m f

3 0 0 0 0(( , ), ( , )) .



3  FEATURE SELECTION

The next issue to be dealt with is the choice of moment
lags for optimal classification results ([1], [3]). Because
the total number of estimated moments is too large, it is
necessary to reduce it to a smaller number by choosing  the
most discriminating moments from the entire set. In any
case, more features do not necessarily imply better
classification results.

Before starting feature selection, a measure for feature
evaluation must be defined. Feature evaluation is
performed in terms of discriminating performance. We use
four such measures: the percentage of classification error
associated with a linear discriminant classifier (pce), the
average between-class  distance (abd), the minimum
between-class distance (mbd) and the ratio of the between-
class variance over the within-class variance (bwv). The
first of these measures is associated with a particular
classifier while the other three depend only on the
statistical properties of the data.

We now come to feature selection. In order to find the
optimal set of features, one has to check the performance
of all possible subsets of the initial set. In practice, even
for relatively small number of features, the number of
possible combinations is enormous and renders this
approach impossible. This being the case, sub-optimal
approaches are sought.

In this work, two different approaches are employed.
The first is to evaluate the discriminating performance of
each feature separately and use the best  m  features as the
final set driven to the classifier, allowing  m  to take
different values.

The second and more powerful approach is to implement
a full stepwise feature selection procedure. This procedure
starts with choosing the best feature (with respect to
discriminating performance) and adds at each step that
feature from the rest of the set whose combination with the
already chosen ones gives the best results. In order to
avoid mistakes caused by selection order, each time a
feature is selected the performance of the set is checked by
rejecting one feature at a time.

At the beginning, both feature selection approaches will
be tested to show the superiority of the second one. After
that, only the full stepwise selection approach will be used
for further processing.

The top plot of  figure 1 shows the results for the two
feature selection approaches (applied to BD9 of figure 2).
The feature evaluation measure is pce and the features are
second order moments. The solid line corresponds to the
full stepwise method while the dashed line corresponds to
features selected individually. We can clearly observe the
superiority of the stepwise method. We can also observe
the smoothness in the stepwise method in contrast to the
abrupt changes appearing in the other method. Of course,
for the first feature and for the whole set, both methods
give identical results. The important difference between

the two methods is in the way they progress. This brings
us to the question: at which stage should we stop feature
selection? A closer look at the figure (bottom plot) shows
that pce starts fluctuating when it drops enough to be close
to its minimum value. We therefore choose to stop feature
selection at the first selected feature that does not minimise
pce any more. On the figure, this means to stop at the
twelfth selected feature.

A similar procedure is followed for the abd and mbd
measures. However, this case is a bit different. Both abd
and mbd are distances in the pattern space and as such
they can never decrease with feature selection. This
becomes clearer in the following: in the original space
where all features are employed, abd and mbd have some
certain values. When only some features are selected, abd
and mbd are the projections of the original distances in the
selected feature subspace. The larger this subspace
becomes, the larger (or equal) the projected distances
become. This means that these distances never decrease
with feature selection, although their increase rate
decreases. This being the case, we can not apply the
criterion used in the pce case to stop feature selection.
Since there are no abrupt changes in the abd and mbd
curve shape, we have to stop feature selection when an
arbitrarily chosen number of features have been selected.
We set this number to 20.

Furthermore, abd has the following property: for each
selected feature, its value is added up to its previous value.
Thus, abd for a set of features equals to the sum of the abd
of each individual feature. This implies that for this
measure the stepwise feature selection method reduces to
the best individually selected features method. However,
this is not the case for mbd. As mbd is the minimum
distance among all pairs of classes, mbd can belong to a
different pair of classes for different sets of features.

For the fourth measure, bwv, features are firstly scaled so
that they have unit within-class variance. Afterwards, the
ratio bwv is formed. Since the within-class variance is kept
constant, increase of bwv means increase of the between-
class variance. bwv is additive like abd which means that
the stepwise feature selection method turns to selection of
individually best features for this measure too. As for abd
and mbd, we stop feature selection for bwv at the 20th
selected feature.

To check the robustness of the features selected by the
four measures, we employ different sets of data. We first
select features on each of these sets and then apply them to
the rest. For each set of data, features selected by pce on
this set give a larger pce value than features selected on
different data. Both abd and bwv show a better
performance; they select features with the same
comparative performance on all sets of data. Finally, mbd
gives totally inconsistent results. Nevertheless, the final
appreciation of each measure will be only done after
classification.



4  CLASSIFICATION

For feature classification, we use four classifiers. Each of
them is briefly described in the following.

4.1  Minimum distance classifier
The minimum distance classifier assigns a new pattern to
that class the centre of which lies closer to the pattern. Its
mathematical formulation is:
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4.2  Uncorrelated gaussian classifier
The uncorrelated gaussian classifier is a special case of the
gaussian classifier. The gaussian classifier models each
class by a gaussian distribution using the class mean vector
and covariance matrix. The uncorrelated gaussian
classifier makes the further assumption that all features are
uncorrelated which, for normal distributions, means also
independent. This implies that only each feature's mean
value and variance are entered into the classifier, avoiding
this way the computational complexity of large covariance
matrices. Its formulation is:

Ug x
x m

i
d

i k
k

d
k i k

i kk

d

( )
( )

exp{ }
/

,

,

,

r
= −

−









=

=∏
∑1

2

1

22

1

2

1π σ σ

where m i k,
 and σ i k,

are the mean and variance of feature

k for class i. Pattern 
r
x  is assigned to the class that

maximises Ug xi ( )
r .

4.3  Linear discriminant classifier
The linear discriminant classifier uses as a measure for
classification a linear combination of the pattern's
components, in which the linear coefficients and constants
are calculated for each class separately. That is,
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S  is the class scatter

matrix which is assumed to be the same for all classes.
Pattern 

r
x  is assigned to the class that maximises
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4.4  First neighbour (1-NN) classifier
The first neighbour classifier is a non-parametric
classifier. It classifies a new pattern to the class which has
the closest sample to the pattern. Instead of only using the
first neighbour, more neighbours can be taken into
account. In this case, the pattern is classified to the class
that has the majority of samples among the specified

number of nearest neighbours. However, there are
theoretical arguments, which are in accordance with our
tests, that the classification error is minimum for the first
neighbour classifier. For this reason, we only take into
account first neighbours.

5  CLASSIFICATION RESULTS

In our experiments, we used 6 textured images from the
Brodatz album: BD9 (grass), BD16 (herringbone weave),
BD19 (woollen cloth), BD24 (pressed calf leather), BD29
(beach sand) and BD84 (raffia) (figure 2). Each of these
images consists of 512 512×  pixels having grey tone
values in the range 0-255.

Moments were estimated on 32 32× non-overlapping
image estimation blocks. Within each estimation block the
image was zero-meaned. Second order moments were
estimated for image blocks covering the whole image
range while third order moments were only estimated on
the first image quarters consisting of 256 256× pixels.

Classification results are shown on figures 3 and 4. In
both figures, the measure on the y-axis is the percentage of
correct classification. On figure 3, we can observe eight
groups of lines, each pair of which corresponds to a
classifier. The names of the classifiers appear on the x-
axis. From each pair of groups corresponding to each
classifier, the left one is for second order moments and the
right one for third order moments. Within each group, we
can discern four lines. These lines correspond to the four
feature evaluation measures (pce, abd, mbd and bwv from
the left to the right). The circle at the middle of the line is
the average percentage of correct classification on the six
textures while the width of the line shows the spread.

We can clearly observe the superiority of second order
moments over third order moments. This is in accordance
with the results reported in the literature. The linear
discriminant classifier outperforms the other three
classifiers by far on both sets of moments. The gaussian
uncorrelated classifier shows a slightly better performance
than the minimum distance classifier which is expected
since they both lie on the same principle but the gaussian
one takes into account class variance in addition to the
mean. The first neighbour classifier, which is of a totally
different nature from the rest three ones, shows a better
performance than the gaussian and the minimum distance
classifiers.

The behaviour of the four feature evaluation measures is
not consistent. Depending on the case, the relative
performance of the four measures changes. The highest
percentage of correct classification is achieved by the
linear discriminant classifier applied on second order
moments with features selected by the pce measure. This is
reasonable since in this case features have been actually
selected to minimise the percentage of false classification.

 Figure 4 shows a similar picture. In this case, only
second order moments are employed. Each image is split
into four quarters and features are selected on the first
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quarter. Then, the selected features are used for
classification on all image quarters. The arrangement of
the figure is similar to that of figure 3. For each classifier
there are four groups of lines, each corresponding to a
feature evaluation measure. Within each group, there are
four lines corresponding to the four image quarters. The
aim is to investigate the performance of the selected
features on new sets of data.
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Figure 4

For the linear discriminant classifier, the classification
performance is similar for all image quarters. The other
classifiers show a more variable picture. The significant
variation of the results does not allow us to make any rigid
conclusion about the robustness of the features.

6  CONCLUSIONS
In this paper, classification has been performed on six
Brodatz images. Features were both second and third order
moments. A large number of moments were firstly
estimated but only a few of them were kept for further
processing. Our tests showed that a small loss in
classification performance can be achieved by appropriate
feature selection. Classification was performed by four
classifiers. Considerably better classification results were
achieved by the linear discriminant classifier. The
robustness of the selected features was also checked by
employment of different sets of data, but no clear
conclusions can be drawn.
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