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ABSTRACT

This paper deals with grey-level images histograms. In a
�rst part, we show how possible it is to reduce the number
of levels with the minimum of information loss, thanks to
information criteria. The same criteria allow to threshold
these histograms, giving the optimal number of thresholds.

1 INTRODUCTION

In this paper, we consider multi-level images, for that nu-
merous techniques of optimal thresholds searching have
been proposed. Among the most usual methods, let us
quote the methods of Otsu (1979) and Kittler and Illing-
worth (1986) then generalized by Kurita et al. (1992).
They all appear as Maximum Likelihood (ML) methods,
but with di�erent hypothesizes on the parameters of the
considered distributions. Iterative algorithms to �nd the
thresholds, avoiding an exhaustive search, have been pro-
posed, but they suppose an a priori knowledge on the num-
ber of thresholds. We propose the use of Information Cri-
teria (IC) penalizing the log-likelihood function, allowing
to obtain the optimal number of thresholds. Di�erent cri-
teria are discussed. For its properties of consistency, the
criterion '�

�
is proposed. The results are illustrated on syn-

thetic images, for di�erent noise levels, and on some real
images. Criteria with the same terms of penalty allow also
to optimally reduce the number of bins of grey-scale his-
tograms, supplying an image dependent compression and

giving also, by another way, the number of thresholds.
This paper is made of three parts. The �rst one gives a

historical review of the several IC suggested for the search
of the order of a parametrized model or a set of probability
density functions (PDF) and we prove how these criteria
can be applied to supply histogram based laws approxi-
mation. In a second part, we show the use of IC for the
optimal reduction of the number of grey-levels in an image.
The third part shows how to use the same IC for the search
of the optimal number of thresholds, and their location, in
a problem of segmentation based on multi-thresholding.

2 PARAMETRIZED MODELS ORDER ESTI-

MATION

2.1 Information criteria

Historically, the �rst IC was obtained in the autoregressive
(AR) modeling context [1]. More generally, let us consider

a set of PDF f(:; �) associated with a random variable X

observed via a sample XN = X1; : : : ; XN . Let b�k;N be
an asymptotically normal estimate (when N ! +1) of
the k-dimensional vector � de�ned from the sample XN .
An estimation of the expectation of the KL information
between f(:; �) and f(:; �k;N ) leads to the Akaike�s crite-
rion [1]:

AIC (k) = 2k� 2
NX
i=1

logf
�
Xi; b�k;N

�
(1)

where N is the number of observations available, and 2k
the penalty term of the criterion. The parameter dimen-
sion k is thus estimated by minimizing (1). To avoid
the non-consistency of this estimate, other model selection
criteria were suggested, where 2k is replaced by cNk, a
penalty term depending on the number of free parameters
in the model. For example, we give some cN values corre-
sponding to classical IC: cN = logN corresponds to BIC
(for Bayesian Information Criterion) [12] or MDL (Mini-
mum Description Length) [9], allowing a strongly consis-
tent estimator of k , cN = log logN corresponds to Hannan
and Quinn's ' criterion [3]. The later criterion ensures a
weak consistency. One can derive other criteria, which ap-
pear as combinations ofAIC,' andBIC. Fromasymptotic
approximations ofKL information and stochastic complex-

ity introduced by J. Rissanen [10], one can obtain the fol-
lowing criteria [2]:

AIC� (k) = 2k + k logN � 2
NX
i=1

log f
�
Xi; b�k;N

�
(2)

'�
�
(k) = 2k+kN� log logN�2

NX
i=1

logf
�
Xi; b�k;N

�
; � 2]0; 1[

(3)
AIC� and '�

�
are strongly consistent order estimators.

2.2 Histogram based law estimation

We are going to show how to approximate a law � by a
histogram, according to a sequence XN of observations.
The number of bins k of this histogram and the width of
these bins must be optimal in the sense of a cost approxi-
mated of the expectation of the KL information. From an



initial partition M with m classes of the set 
 on which
is de�ned the random variable X of density f(:; �), we
search a subset K with k classes of M . Several authors
were also interested with the approximation of histograms
based upon AIC-type criteria; let us quote J. Rissanen [11]
or C. C. Taylor [14]. In this paper, we use the method pro-
posed in [7], that allows to give the number and the bins
width. The obtained bins have not the same width, allow-
ing an optimization of the approximation. One obtain the
following AIC-type estimator of the number of bins of a
histogram from N observations [7]:

AIC (k) = 2k � 2N
X
B2K

b�k;N (B) log
b�k;N (B)

�(B)
(4)

where b�k;N (B) is the frequency associated with bin B and
� is a a priori law. We can also extend the criteria (2) and
(3) which ensures the estimator consistency:

AIC� (k) = 2k + k logN � 2N
X
B2K

b�k;N (B) log
b�k;N (B)

�(B)

(5)

'�
�
(k) = 2k + kN� log logN � 2

X
B2K

b�k;N (B) log
b�k;N (B)

�(B)

(6)

3 IMAGE APPLICATION

The initial partition M is a partition with the m equal-
width bins given by the initial number of grey levels (gen-
erally 256). The form of the bins for a subset K0 with
k0 = (k � 1) bins is obtained from the subset K with k

bins, k < m, by a merging process of adjacent bins. At
each step, we search the two adjacent bins to merge giving
the minimal IC(k � 1) value. The process iterates until
IC(k � 1) > IC(k). This method allows a smoothing of
the curve avoiding false increasing. We present the his-
togram (Fig. 1(b)) on 256 grey levels of the test image
Lena of size N = 512 � 480 = 245; 760 pixels (Fig. 1(a)).
The initial histogram has numerous local valleys and we
show on this example, the results of the merging process

obtained thanks to the di�erent IC. Figure 1(e) shows dif-
ferent curves IC(k): AIC, BIC and '�

�
, with � = 0; 15.

Indeed, for these values of � and N , the criteria AIC�

and '�
�
are equivalent. One can see the curve smooth-

ing obtained thanks to the merging process. The smallest
number of bins is obtained using '�

�
criterion. The number

of bins reduction by AIC is weak: 73 bins from the 256 ini-
tial levels. If we consider this histogram obtained by AIC
as reference, the one obtained by '�

�
(Fig. 1(d)) keeps the

main peaks, but with an important data reduction. The
number of classes being important, the di�erence between
the penalties of '�

�
and BIC (orMDL) is interesting. Fig-

ure 1(c) shows the image Lena obtained by the 40 classes
extracted by this criterion. The e�ects of the compression
are not visually sensitive, and less than with a reduction
to 40 same width bins. The e�ect on compression is signif-
icant: if a LZW-compressed TIFF �le of the initial image

(a) original im-
age

(b) grey levels his-
togram

(c) Image Lena
encoded using the
40 levels

(d) Merging by '
�

�

(k=40)

(e) Behaviors of the criteria

Figure 1: image coding by the proposed method

Lena needs around 240 kB, only 97 kB are necessary for
the resulted image.

4 APPLICATION TO THRESHOLDING

4.1 Maximum Likelihood thresholding

Let us recall the principles of histogram thresholding meth-
ods, classical techniques for image segmentation when the
di�erent objects can be distinguished by their grey-level
values [5]. Let XN = X1; : : : ; XN be an observation
sequence, with discrete values in [1;m]. The histogram
h(i); i = 1; : : : ;m; is then built, as also the normalized his-
togram p(i) = h(i)=N when N =

P
m

i=1
h(i) is the number

of observations. The image segmentation is a classi�ca-
tion problem of the observations into k classes c1; : : : ; ck
where k is a priori given, thanks to k � 1 thresholds
tj; j = 1; : : : ; k�1, and t0 = 0 and tk = m. Let us consider
the following mixture model:

f
�
XN

j c1; : : : ; ck
�
=

kY
j=1

�
Nj

j

NjY
i=1

fj(Xi) (7)



where �j is the prior for class cj, that can be estimated, in

the ML sense, by : b�j =
Ptj�1

i=tj�1
p(i) and where Nj is the

number of observations in the interval [tj�1; : : : ; tj[. The
PDF associated with each mixture component fj will be
considered as gaussian. The mean and the variance of each
class cj; j = 1; : : : ; k; noted respectively �j and �

2

j
can be

estimated in the ML sense by b�j = b��1j
Ptj�1

i=tj�1
ip(i) and

b�2
j
= b��1

j

Ptj�1

i=tj�1
(i � b�j)2p(i).

One obtains the following expression of the maximized
log-likelihood of the model de�ned in (7):

L(k) = N

kX
j=1

b�j log b�j � N

2
log(1 + 2�)�

N

2

kX
j=1

b�j log b�2j
(8)

The location of the k�1 thresholds maximizingL(k) allows
the image thresholding. More accurately, let us consider
the three following hypothesizes:

� Hypothesis H1 (general case): no restriction on the
parameters. Missing out the parameters that do
not depend on k, one obtains the following criterion:

L1(k) = N
P

k

j=1
b�j log b�jb�j that is equivalent to the

Kittler and Illingworth�s criterion [4].

� Hypothesis H2: same variance �2 for each class. We
propose: L2(k) = N

P
k

j=1
b�j log b�j � N

2
log b�2.

� Hypothesis H3: same variance �2, and a priori

equiprobability of the classes. In this case, the ob-
tained criterion is equivalent to Otsu�s criterion [8]:
L3(k) = �

N

2
log b�2.

4.2 Application of the information criteria

Some IC have been already used in image processing
[6, 13, 15]. We here propose to add in multi-thresholding
methods, the contribution of consistent information cri-
teria to obtain the optimal number of thresholds. These
criteria always have the following form:

IC(k) = �2Li(k) + nkcN (9)

where Li(:); i = 1; 2; 3, is one of the previous log-likelihood
functions and nk is the number of free parameters of the
model. The value k minimizing (9) is taken as class number
estimator. The usual criteria di�er by the form of cN .
Under the hypothesis H1, the number of free parameters
nk will be 3k�1 (see [6]) since

P
k

j=1
�j = 1. If we consider

the hypothesis H2 with a common variance, the number of
free parameters is 2k. For hypothesis H3, the number of
free parameters is k+1. We then obtain three expressions
of the criteria where the tj ; j = 1; : : : ; k� 1; are such that
the log-likelihood Li(k) is maximum for a given k. Figure
2(a) presents a synthesized noised image coded on 256 grey
levels (N = 256� 256) and � = 10.
We can see on �gure 2(b) the location of the single

threshold t1 (k = 2) or the two thresholds t
0

1
and t

0

2
under

hypothesis H1, for the noise level value � = 10. The cor-
rect number (k = 3 components) of classes is found by the

(a) syn-
thetized
image

(b) histogram and thresholds location

Figure 2: location of the thresholds on a synthetic image

criterion AIC�. With the other penalties, the criteria val-
ues decrease when the number of classes increases. Table
1 gives, under this hypothesis H1, the values of the cri-
teria AIC and AIC�. Di�erent authors [6, 13] have been

Table 1: values of the criteria AIC and AIC�

k AIC(k) AIC�(k)
1 156,73 156,75
2 149,36 149,41
3 145,01 145,09
4 145,01 145,11

remarked that the penalties of classical criteria (AIC or
MDL) are not su�cient and proposed empirical greater
values. The criterion AIC� o�ers an improvement of these
criteria and is theoretically justi�ed. We can see on the
example given in table 1 that the penalty just allows to
increase the criterion AIC� from the number k = 3, but
with a weak value in relation to the value of the crite-
rion, under this hypothesis H1. We have noted that in
real situations involving document images, the histograms
have few classes but often noised by the presence of little
peaks. The Kittler and Illingworth�s method is sensitive
to these noises, avoiding the convergence of criteria. On
all the treated documents, hypothesis H2 (common vari-
ance) gives the best results for the location of thresholds.
Moreover, it is under this hypothesis that the criteria con-
verge the easiest. But in some cases, the greatest penalty
(AIC�) with the best hypothesis (H2) are not su�cient.

Figure 3 shows an image and AIC� value. Table 2 gives
the values of each penalty term and likelihood for the dif-
ferent number of classes. The analysis of the results shows

Figure 3: original image and AIC� value

that the penalty term keeps weak in relation to likelihood



Table 2: behaviors of AIC� according to each hypothesis

k = 2 k = 3 k = 4
L1 cNnk L1 cNnk L1 cNnk

H1 1214366 70 902850 112 445307 154
H2 1280117 56 1070192 84 1065250 112
H3 1020187 42 655668 56 579604 70

terms. So, the criterion '�
�
should bring a solution to this

problem under any hypothesis. Figure 4 shows the be-
haviour of '�

�
on an example of a part of document, with

� = 0:5. The three regions (k = 3) are well segmented for
'�
�
criterion by the method, under the hypothesis H2.

(a) Initial image (b) Behaviors of two cri-

teria

(c) Location of the thresholds (d) Thresholded im-
age

Figure 4: Part of a document image

5 CONCLUSION

In this paper, we have introduced the notion of informa-
tion criteria and their de�nition within the framework of
histogram based law approximation. The e�ect of this ap-
proximation on an image is an optimal reducing of the
number of levels: the reduction factor equals 6 on the im-
age Lena, allowing a strong compression without any visu-
ally sensitive degradation. The compression rate is impor-
tant, 2:5 on the image Lena. In the last part of this paper,
information criteria are again used to estimate the number
and the location of thresholds in grey-level histograms. On
the two kinds of applications treated here, we can observe
the overparametrisation tendency of AIC, ' or even BIC.
In that sense, the penalty term in '�

�
seems to be a good

improvement from AIC and BIC penalties. A problem is
not solved: the choice of � value (0 < � < 1) is empirical.
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