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ABSTRACT

Classi�cation of urban areas from a density measure is
required in many application �elds. For instance, propa-
gation models for cellular radio networks are parameter-
ized by coe�cients whose value is linked to the nature of
the soil. Geomarketing is also interested in knowing the
population concentration (urban, suburban ...). This
paper presents the �rst results about the construction
of an algorithm devoted to the classi�cation of urban ar-
eas in SPOT panchromatic images. This algorithm has
been inspired by [5, 3] and we point out the di�erences
betwen their method and ours.

1 INTRODUCTION

This paper deals with segmentation of urban areas [6]
in SPOT panchromatic images. It starts from the MRF
model proposed in [5]. Investigation of this model led
us to undertake the extension of an initialization phase,
and we point out the di�culties that appear when la-
belling di�erently two regions with same textural prop-
erties.

Consequently, we modify the labelling procedure pro-
posed in [5] and, more generally, we improve the la-
belling coherence. These modi�cations are included into
a new segmentation/classi�cation algorithm presented
herein that also improves the speed of successive scans
by introducing information on spatial context.

Our ultimate objective is to obtain an accurate classi-
�cation of urban areas based on concentration (or den-
sity) criteria. This latter point, however, will not be
explicitely developped herein, but it is implicitely em-
bedded in the new segmentation schemes.

The �rst section is related to the model proposed in
[5]. The second section is devoted to the new classi�-
cation algorithm we have proposed, and results are dis-
cussed in the last section.
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2 MODELLING

The observed image I is de�ned on a regular lattice
S. In a segmentation process, each site in S has to be
labellised according to the region it belongs to.
Let E denote the image resulting from pixels' la-

belling, � the set of all possible labels, 
I the con�gu-
rations' space of the observed image and 
E the con�g-
urations' space of labels' image.
Segmentation is tackled as an energy minimisation

problem. A mapping

U : 
I � 
E �! IR

is designed to express the adequation of the labels con-
�guration with the observed image.
For a given observed image i, the solutions are the

con�gurations ê which minimise U (:; i).

In a stochastic setting, we assume that I and E are
two random �elds. As it is proposed in [3], we opt for a
Gibbs representation of the distributions and de�ne an
a posteriori distribution

P (E j I = i) =
1

Z(i)
exp (�U (E; i)) : (1)

From then on, it is equivalent to seek either for energy
minimum or for Maximum A Posteriori (MAP).
To design the energy, we choose a neighborhood sys-

tem G = fGs; s 2 Sg where Gs is a neighbors' set as-
sociated to the pixel s. G determines a set of cliques (a
clique is a set for which two elements are neighbors, or
a singleton).
We then de�ne U as a sum of potentials whose val-

ues depend exclusively on cliques' con�gurations. As a
consequence, the Gibbs random �eld E is de�ned with
respect to G. This implies that E is a Markov random
�eld with respect to G.

U (e; i) =
X
s2SE

X
�2�

�(es = �) �s(�; i) + Rs(e) (2)

�(es = �) = 1 , if es = �, 0 otherwise. �s designates a
disparity measure between a block of pixels centered at



s and all the pixels labelled �. Rs(e) is a regularity term
(Potts model) that we did not use in our experiments.
Note that the cliques are limited to the singletons. This
is an important di�erence with the approach in [3] where
neighborhood systems are fully used.

Segmentation process : The segmentation process
is based on textures' features. We derive from I a vector
image O: Os is a vector including local features com-
puted from I within a window centered at s.
In our experiments, we employed a quantised version

of Haralick textures attributes [4] and � is as follows:

�(es; �) =

MX
m=1

�
2 �(d(Fm

s
; ~Fm(�)) > cm) � 1

�
(3)

where M is the number of features. Fm
s

is the distribu-
tion of the mth feature on a block centered at s. ~Fm(�)
is the distribution of the mth feature on the whole sites
labelled �. d is the Kolmogorov-Smirnov distance [3, 1]
between distributions. cm is a threshold. This thresh-
old can be �xed using values from the statistical test
of Kolmogorov-Smirnov. It explains why we use the
Kolmogorov-Smirnov distance, but we could have taken
any distance between distributions.
Let us note that a "sites relation" is introduced via the

de�nition of �s. This relation is global. In [3], because
the relation is de�ned exclusively via the neighborhood
system, the relation is local.

3 IMPLEMENTATION

We present herein two algorithms that we used to com-
pute the MAP and we point out the di�erences with the
algorithm proposed in [5].
Both algorithms are divided in K phases. The kth

phase consists in a sequence of steps. At the nth step,
labels are in a set �(n), the set of current labels.
A special label �(r) is also introduced. This label con-

trols label creation. Indeed, at the begining of a step,
the special label of the previous step becomes a new cur-
rent label. Besides, steps are stopped when the special
label is not used. Thanks to this label, the number of
labels needed for the description of the image needs not
to be �xed a priori.

Algorithm : Within a step, the lattice is scanned sev-
eral times. During a scan, sites are labeled in accordance
with the following rules : Let us call d(Fm

s
; ~Fm(�)) the

response of the mth feature to the label � at site s. This
response is negative if the distance is below the thresh-
old, positive otherwise.
The rule for algorithmA is as follows: �(r) is assigned

to site s, if for all �, less than k features are giving
a positive response; otherwise, site s takes the current
label for which the number of positive responses is the
highest.

The rule for algorithm B is almost the same except
that a site label is modi�ed if and only if the site is
located on an edge, and that possible labels for a site
are the current labels of its neighbors and its own label.

We presented the algorithm in terms of rules to give a
better understanding of its behavior. Remark however
that it can be seen as an ICM applied to conditional
probabilities that are de�ned with energies similar to
Eq. 2.

Both rules imply that, at the kth phase, pixels are
grouped in accordance to k features. Thus, as k in-
creases, the criterium for a site to keep or to get a cur-
rent label becomes �ner and �ner. In the �rst phase,
sites are clustered following a coarse criterium. At each
phase, the labels con�guration of the previous phase is
reorganied according to additional requirements.

Remarks : Actually, the decomposition of the algo-
rithm into phases extends the idea of an initialisation
phase presented in [5]. As a consequence of this decom-
position, the progression of the process is more steady.
We can also have a complete control of the evolution.

Let us mention another remark about the role of
phases. Sites are grouped in accordance with their re-
sponses to a certain number of features, whatever those
features are. Thus, provided that phases are stopped
for small k, features which are \not good descriptors"
of the image do not alter the behavior of the algorithm.
This shows that the algorithm is able to adapt to a set
of images for which descriptions are accomplished dif-
ferently. From a practical point of vue, this property
is interesting when it is hard to de�ne a unique feature
which describes a set of studied images.

Di�erences between the two algorithms : There
are two main di�erences between algorithmsA & B and
the algorithm described in [5]. First of all, at the be-
ginning of a step in [5], labels are assigned to each re-
gion having the special label. Therefore, di�erent labels
can be assigned to sites having same textural proper-
ties. Consider the case when two regions with two dif-
ferent labels but with same textural attributes meet.
This con�guration is a local minimum of the energy.
On the frontier, the label of sites are indi�erently one
of the two regions labels and oscillates between them.
The ICM can thus be slowed or stopped in that type of
con�guration.

The relabelling procedure we choosed for algorithms
A and B is a way to avoid this problem. At the end of
each step, the special label is changed into one current
label. This procedure improves both energy landscape
and ICM convergence. It also allows an interpretation
of the labels. Once the algorithm has converged, we
are insured that the correspondence between the cur-
rent labels and the textures in the image is one-to-one.
Moreover, in [5], sites that can change their label are



determined by an instability heap. This heap is equiv-
alent to sites' selection in rule B, in the sense that it
restricts the number of modi�ed sites and thus speeds
up scans. However, it seems possible that, using such
selections, a site can have the special label at the end of
an ICM, even if a current label suits it. This can lead to
the problem we just mentionned. That is why we have
added a scan at the end of each step in B so that all
sites could be checked and properly labelled with one of
all possible labels1.

One can remark that algorithm A does not take spa-
tial information into account to make decision about
pixel labels. This is essentially due to the form of the
energy (Eq. 2) which is restricted to singleton cliques.
This weakness is bypassed in B and [5] by choosing
possible labels among the current labels of neighboring
sites.

Finally, we would like to point out the fact that, due to
the modi�cations explained above, the labels correspond
exactly to clusters of pixels belonging to the same class.
Therefore algorithm B can be used for classi�cation.

4 RESULTS

Algorithm B was performed on SPOT images of Cher-
bourg and Paris. Those images present textures that
are quite di�erent. In all experiments, we used Haralick
features. They were computed on (6�6) local windows;
blocks' size was (15 � 15). For all images, the thresh-
olds applied to the distance between distributions of the
features were �xed to 0.34. This threshold tune the con-
�dence on the features distribution and this value has
been found experimentaly and corresponds to a mini-
mum amount of misclassi�ed pixels

As one can see in Fig. 1(a), 1(c), 1(e), phase 1 per-
mits to delimit urban regions from non urban regions.
Segmentation within urban regions can be observed at
phase 2 in 1(b), 1(d), 1(f). In next phases, images can
be over-segmented. We thus stopped the algorithm after
phase 2.

5 CONCLUSION

We have described a new algorithm for the classi�ca-
tion of satellite images in terms of types of urban areas.
This method is based on MRF and is a modi�cation of
the one proposed in [5]. Indeed, we have changed the
rules for the attribution of the labels. Moreover, our al-
gorithm is decomposed in successive phases that allows
us to control the evolution of the migration/creation of
labels. Our �rst results are promising and now we aim
at reducing both the amount of memory used and the
execution time for application of this method to images
of larger size.

1For initialisation, we have also added a scan of this kind at

the beginning of the steps.
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Figure 1: Segmentation of SPOT images using algorithm B: Paris1: (a) phase 1, (b) phase 2; Paris2: (c) phase 1,
(d) phase 2; Cherbourg1: (e) phase 1, (f) phase 2.


