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ABSTRACT
In this communication, an efficient fractal
estimation is proposed in a given frequency
range. It is based on the maximum likelihood
Whittle approximation for the stationary
increments of fractional Brownian motion. Its
efficiency is first shown on synthetic data
generated by the Cholesky method. Then it is
applied to smectite deposits on films analyzed
by atomic force microscope. It is shown that
the fractal parameter measured in the low
frequency region allows to separate 3 groups
of smectite clay images, and enables to recover
chemical properties of the material.

1  INTRODUCTION
Fractional Brownian motion (fBm) is a non-
stationary stochastic process widely used to
model 1/f behavior [1]. In the time or scale
domains, such a process is statistically self-
similar. More precisely, z-axis fluctuations are
related to x-axis increments by var(∆z) ∝ ∆x2H.
H such that 0<H<1 is the Hurst exponent. H
close to 0 corresponds to rough signals or
images, while they are smooth for H close to 1.
In many cases, as for example smectite images
[2] or bone texture radiographs [3], the fractal
character is scale limited or identically,
frequency limited. In such cases, it would be
interesting to measure the fractal dimension in
the region where data are self-similar. A
method to properly measure H i.e. choosing a
reliable estimator and being able to measure H
at a scale or frequency range of interest is
needed.
The object of this communication is an attempt
to estimate the H parameter in a given
frequency range. In the first part, main results
of a recent study comparing the efficiency of
fractal estimators will be presented. Then, a
measurement in a frequency range of interest

will be proposed. Finally, it will be applied to
smectite images where a 1/f behavior is
experimentally observed in the low frequency
region. Results of H measurements will be
compared to standard surface roughness
attributes.

2  EFFICIENT FRACTAL ESTIMATION
The efficiency of H estimators can be assessed
on reference synthesized fractal signals [4].
This last study has shown that among 5
synthesis methods currently used in signal
processing, only the Cholesky decomposition
of the covariance matrix of the process
increments method [5] and the Weirstrass-
Mandelbrot function [6] produce proper fBm
signals. Then, a set of reference signals was
generated on which 8 fractal estimators were
tested [7]. The bias is the difference between
the H value of synthesized true fBm signals
and the mean H value for a given estimator.
The variance is compared to the Cramer-Rao
lower bound (CRLB) which can be calculated
using results in [8]. The maximum likelihood
method (ML) [5], the variance method (VAR)
[9] and the Wavelet method (WAA) [10] give
good results concerning the bias. But, only ML
has a variance close to the CRLB even for a
short data length. However, some practical
limitations may be reported for this last
method. Inverse and determinant of a N×N
matrix have to be calculated. Even if the
Levinson algorithm was used for this Toeplitz
matrix [11], the computer burden is expensive
and the size of the studied vector is limited
(1024 samples for a memory size of 32MB).
But, even more important when it is applied to
experimental data having limited self-similar
behavior, this method cannot measure the
fractal dimension in a given scale range or in a
frequency range while VAR and WAV can.



3 EFFICIENT FRACTAL ESTIMATOR
IN A GIVEN FREQUENCY RANGE
This estimator should be a ML based one
because of its efficiency but operating either in
the scale or frequency domain. Thus, selecting
an appropriate range would be possible.
Before presenting an approximation due to
Whittle in the frequency domain, main steps
for the classical ML H estimates are to be
recalled. It is based on the fBm model or on its
increments, the fractional Gaussian noise
(fGn) which is stationary. Since they are both
zero mean Gaussian processes, their log
likelihood function (LLF) with respect to H
can be directly expressed (constant terms are
neglected):

.  V R V-R log LLF(H) -1T-=                  (1)

V is the observed vector (either fBm of fGn)
and R is the corresponding theoretical
normalized covariance matrix depending on H.
The ML H value correspond to the maximum
of (1) in the interval ]0,1[.
The Whittle approximation operates in the
frequency domain in the case of a stationary
process [12]. Thus, only fGn can be
considered for our particular case. The Whittle
approximated log likelihood function, LLFw,
with respect to H is the following:
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T is the theoretical power spectral density

(PSD) of fGn and $E  is the estimated PSD for
a given vector increments. The former is
computed by Fourier transform of the
theoretical covariance function depending on
H and the latter by the square modulus of the
Fourier transform of data increments. The
Whittle ML H value correspond to the
maximum of (2) in the interval ]0,1[.
The efficiency of the Whittle approximation
can be compared to the classical ML estimates
on reference signals. 100 vectors of 256
samples each were generated using the CHO
method [5]. Results concerning the mean H
value as well as the standard deviation (STD)
for both estimators are presented in table 1 for
3 H values. The square root of the CRLB
allows to evaluate their respective quality.
A bilateral Student t test shows that both
estimators are unbiased and a right-sided
unilateral F test shows that both estimators are
equal to the CRLB. Tests are performed with a
level of significance of 0.01. Thus, both
methods are efficient. But, compared to the
classical ML one, the Whittle approximation is
less time consuming and can operate in a
frequency range of interest as shows table 2.
Here, estimation is performed on a reduced
frequency range, first in the low frequency
region (from 0 to fs/4 with fs the sampling
period) and then for high frequencies (from
fs/4 to fs/2).

$H Whittle STD Whittle $H ML STD ML CRLB

H=0.2 0.208 0.032 0.201 0.031 0.030
H=0.5 0.497 0.040 0.498 0.041 0.039
H=0.8 0.796 0.043 0.798 0.042 0.039

Table 1 : mean H estimated value ( $H ) and standard deviation (STD) compared to the Cramer-Rao

lower bound (CRLB) for both Whittle and ML estimators on 100 signals of 256 samples generated by
the Cholesky method.

0 to fs/4 fs/4 to fs/2

$H Whittle STD Whittle $H Whittle STD Whittle

H=0.2 0.213 0.046 0.270 0.247
H=0.5 0.497 0.059 0.498 0.269
H=0.8 0.786 0.061 0.732 0.230

Table 2 : mean H estimated value ( $H ) and standard deviation (STD) for the Whittle estimator on

100 signals of 256 samples generated by the Cholesky method. It is first presented in the low
frequency region (0 to fs/4) and then in the high frequency one (fs/4 to fs/2).



Figure 1 : Atomic microscope images of  smectite clays deposits on films for  respectively Li+, Mg2+

and Al3+ in the suspension. The resolution of the images is of 16 microns.

In the low frequency region, the Whittle
approximation gives good results. But, it is
severely affected by statistical fluctuations in
the high frequency one. Indeed, due to the 1/f
structure of fractal signals, a few of the total
energy of the signal rely in the high frequency
region and could explain these poor results. In
this case, averaging in the frequency domain
would be necessary before estimating the H
parameter.

4 APPLICATION TO SMECTITE
IMAGES
A lot of surfaces generated by irreversible
growth (deposition, fracture) exhibit a fractal
character [13][14]. It is the case of smectite
clay surfaces. The final stage of the deposition
process is the concentrated regime when the
clay becomes a dry rock. Depending on the
cations present in the suspensions, two
extreme situations may be considered: thin and
deformable aggregates for low charge and
strongly hydrated cations (entangled clays) and
thick and rigid aggregates for strongly
polarizing and weakly hydrated cations
(stacked clays). The nature of the aggregate is
of a great importance because a lot of the
material properties (mechanical, optical,
porosity, ...) are strongly related to it. To
recover the nature of the aggregate, an image
analysis can be performed. At small scales or
conversely at high frequencies, the roughness
of the aggregate is revealed which is not
discriminative. At large scale or conversely at
low frequencies, entangled clays should
produce smooth surfaces while they should be
rough for stacked clays. In Figure 1, atomic
force microscope images of smectite clays are
presented for respectively Li+ (entangled

clays), Mg2+ and Al3+ (stacked clays) in the
suspension. The scale of 16 microns can reveal
the evolution both at small and high scale.
As expected, images are globally smooth for
entangled clays and rough for stacked clays.
Within this last group, no low trends are
visible on the image of Mg2+ while a low trend
can be seen on Al3+ image. Thus, we can
define 3 groups. Group I: entangled clays
having smooth surfaces with low trends (Li+);
Group II: stacked clays having rough surfaces
with no low trend (Mg2+) ; Group III: stacked
clays having rough surfaces with low trends
(Al3+). A frequency study of these images is
shown in figure 2 where the Power Spectral
Density (PSD) of the increments of image
lines are represented in a log-log scale for the
same cations as figure 1 and in the low
frequency region. If present, the fractal
character is equivalent to straight lines of slope
1-2H (0<H<1).

Figure 2 : PSD in the low frequency region of
the increments of image lines of figure 1 in a
log-log plot.
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As seen, curves are almost linear in the low
frequency region and slopes are quite different
in the 3 cases. Thus, the H parameter can be
measured in the low frequency region using
the Whittle approximation as previously
explained. Classical roughness attributes can
also been computed: the peak-to-valley (PV)
distance (altitude distance between highest and
lowest point) and the root mean square (RMS)
distance are also of interest (standard deviation
of the altitudes). The next table shows the
mean H parameter estimated in the low
frequency using the Whittle approximation,
the mean PV and mean RMS distances on 4
images for each group.

H Whittle PV
(microns)

RMS
(microns)

Group I 0.705
±0.076

1.72
± 0.334

0.570
± 0.787

Group II 0.207
± 0.040

1.19
± 0.403

0.247
± 0.437

Group III 0.410
± 0.132

1.60
± 0.585

0.532
± 0.207

Table 3 : average H parameter, PV and RMS
distances on 4 images of Group I, II and III.

Due to the few samples that were available
(only 4 in each group), statistical tests are not
significant. However, it can be seen that the
PV distance is identical in Groups I and III
(both having low trends) but is different for
Group II (no low trend). The RMS distance
shows the same behavior. Only the low
frequency H parameter has different values for
the 3 groups. It is then possible to discriminate
between these 3 groups using the low
frequency H parameter while classical
roughness attributes cannot. Thus, chemical
properties of the material can be recovered by
a fractal image analysis procedure.

5  CONCLUSION
In this communication, we have proposed a
fractal estimation in a given frequency range
based on the maximum likelihood Whittle
approximation. This method is efficient on
synthesized fBm signals. But, at the opposite
of the classical ML one, it is able to measure
the fractal dimension in a frequency area of
interest.
This method was applied to smectite clay
atomic force microscope images to estimate
the low frequency H parameter. This

characteristic is related to the nature of the
aggregate leading to smooth or rough surfaces,
low trends or no low trend images. Results
show that H enables to separate 3 groups of
images while classical roughness attributes
cannot. Thus, it is possible to recover chemical
properties of the material conditioning other
characteristics (mechanical, optical, porosity,
...) by a fractal image analysis tool.
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