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ABSTRACT

The aim of this study is to detect P-wave onset and end

of electrocardiograms (ECG). This wave is important

for detecting people prone to atrial �brillation, one of

the most frequent heart diseases, but the wave is very

di�cult to segment accurately because of its small am-

plitude and the very di�erent shapes it can take. Two

di�erent methods are tested for the segmentation : the

�rst one is based on Hidden Markov Models. Though

results are good, some particular cases are not well seg-

mented. However a second method based on the Con-

tinuous Wavelet Transform can solve those problems.

1 Introduction            

Figure 1: an electrocardiogram

P-wave detection is an important issue for many diag-

nosies, but is rather di�cult because of its low amplitude

compared to those of QRS complexes and T-waves, and

its variable shape. Many approaches have been tested :

� adaptive methods which suppress R and T waves

in order to better detect the P-waves [1],

� methods based on time-frequency transforms [2]

� syntactic methods using an alphabet to represent

the di�erent possible aspects of the signal [3]

� statistical methods, like Hidden Markov chains,

based on the probability density of some param-

eters describing the signal [4].

The �rst approache, sometimes e�cient, is di�cult to

adapt to a new database or to new con�gurations due to

the use of empirical thresholds. Time-frequency meth-

ods and syntactic methods try to be more general. The

advantage of statistical methods is that they can be

used for any sort of con�guration if the learning base

is adapted. However there is no parameter which per-

fectly di�erentiates each state of an ECG. The Hidden

Markov Model allows the evolution of the signal to be

taken into account. The segmentation will consist in rec-

ognizing every state and the points of changes of state.

In collaboration with the Brest University Hospital, a

database of 179 patients was built. Lead II of a stan-

dard twelve lead ECG was studied in relaxed conditions.

The signal was sampled at 1 kHz and bandpass �ltered

between 0.01 Hz and 40 Hz. The recordings lasted one

minute.

2 Segmentation based on a Hidden Markov

Model

2.1 The model

First, the QRS complexes are detected. Many e�cient

methods exist for this step and the mistakes that they

cause are rare, so the methods will not be detailed here.

Then, a Markov Model [5] was de�ned representing a

single beat. The observed parameter is the local slope

of the ECG. An amplitude measurement alone or as-            

Figure 2: the di�erent states of the Hidden Markov

Model

sociated with the slope was also tried, but it caused a

reproducibility problem: the amplitudes of the waves

are very di�erent from one signal to another and the

baseline �uctuations modi�ed the results a lot. However



their in�uence on the slope is limited and this parameter

does not vary so much from one patient to another.

A beat is decomposed into ten states : four isoelectric

segments and two states per wave (�gure 2).

Each state can be associated with a phase of the heart

activation. This model can be used for any lead but the

states would then not necessarily correspond to the same

activation phases.

Hidden Markov Models allow the temporal evolution

of the observation. to be taken into account The ECG

represents the electrical activation of the heart which

takes place in a logical order : �rst the atria are po-

larised (P-wave), then the ventricles are polarized (QRS

complex) and �nally depolarized (T-wave). Pathologies

can modify this evolution and must be included in the

learning base in order to be recognized. n order to rep-            

Figure 3: the possible transitions of the hidden Markov

model for the ECG.

resent this evolution, our model is based on a left-right

(or Bakis) model: the state index increases with time.

But such a model is not su�cient. We have added more

jumps to allow the model to go back in certain condi-

tions and to jump some states. So a left-right model

was de�ned with (�gure 3) :

� the possibility of jumping one state at most except

after P2, Q2 and T2 (if the model does not go back,

it necessarily goes to the following state),

� the possibility of three back transitions : P2-P1,

Q2-Q1 and T2-T1.

Although the de�ned states are su�cient for any situ-

ation encountered the transitions allowed are not. For

example a premature ventricular beat (a QRS complex

appearing without a P-wave before it) cannot be de-

tected. Such a detection would be possible if a tran-

sition from state 1 (Iso 1) to state 5 or 6 (Q1 or Q2)

existed. We did not consider such situations because

they were not frequent enough in our database. But a

simple modi�cation would allow such a recognition.

2.2 Estimation of densities

To estimate the probability densities of the slopes in

each state a kernel-di�eomorphism estimator [6] with a

gaussian kernel was used. The kernel density estimation

is an attractive non parametric estimator and the di�eo-

morphism suppresses border convergence di�culties by

using an appropriate regular change of variable. Using

this estimator, the probability density function of the

slope in each state was estimated:

2.3 Results

The choice of the learning base is essential. All the cases

that can be encountered have to be included. However

the learning phase can be repeated when new con�gura-

tions appear so that the model can be adapted. We have

included most of the con�gurations we encountered, es-

pecially the di�erent P-wave shapes [7].

With 179 signals in our base, only 24 patients were

included in the learning base and 10 beats for each of

them. A larger learning base would probably give better

results but keeping a small base will give more reliable

results, not too dependent on our database.

One di�culty is to �nd a compromise between noise

sensivity and the detection of small artefacts as shown

on the �rst P-wave in �gure 5. This is done during the

learning process and has to be validated according to

the quality of the ECG recordings.

119 segmentations with

an error under 10 ms.

RESULTS: 42 segmentations with an

error between 10 ms and 20 ms.

18 segmentations with

an error over 20 ms.

2.4 Comments

The results are good. The advantage of this model is

that it is quite simple and evolutive: it can be modi�ed

to new con�gurations if the learning base is adapted. Its

robustness can also be increased:

� we can change the compromise between robustness

to noise and the detection of small artefacts,

� we can increase the learning base to be able to rec-

ognize as many con�gurations as possible,

It can also be easily adapted to other leads or other

recording conditions. However, the main problem is a

segment PQ with a slope di�erent from zero followed

by a small and negative Q-wave. The model does not

detect the end of the P-wave. To solve this problem, we

can use the capability of the wavelet transform to detect

singularities [5].

3 Segmentation based on the continuous

wavelet transform

A Morlet wavelet was used. The main problem is the

size of the analysing wavelet at low frequency resolution,



because it takes the QRS complex into account when it

is centered on the P-wave (�gure 7).

So, a hierarchical algorithmwas implemented: we �rst

detect the QRS complexes, then we suppress them and

search for the P-waves.

To detect the QRS complexes, the wavelet transform

of the signal is computed. It is a matrix with N lines

(the number of decomposition levels) and M columns

(the number of samples). The maximumof each column

is detected, as well as the number of the line (the level),

where it is obtained, which is called the index of the

maxima (�gure 6).            

Figure 6: signal and maxima indexes.

We notice that important transitions are obtained for

singularities. After detecting the biggest ones, their level

gives the point where the segmentation of the QRS com-

plexes must occur.

A derivation is then made followed by squaring this

level.

To determine the QRS peaks, onsets and ends. It

is interpolated by a third order polynomial in order to

avoid important discontinuities (�gure 8).

A new wavelet transform is then computed on the re-

sulting signal and the same process is applied to detect

the P-waves. But the P-wave frequency content is low

so the result obtained is not accurate because the level

considered has a bad time resolution. To improve ac-

curacy the maxima chains are followed, level after level,

on the wavelet transform in order to make the decision

at a higher time resolution level (�gure 9).

The con�guration shown in this example is not well

segmented using the hidden Markov model because of

the negative slope of the PQ segment. The wavelet

transform enables this problem to be solved. However,

some thresholds are needed and their calculation make

this algorithm di�cult to generalize.

4 Conclusion

Two complementary methods of ECG segmentation

have been presented. Hidden Markov Models can eas-

ily be applied to new signals by modifying the learning

base. However the probability density functions are not

clearly separated and, in certain cases, some mistakes

between di�erent states can be made. In these cases,

the wavelet transform appears to be more accurate and

can be an e�cient solution to the problem.
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Figure 4: Probability density function of the slope in each state.

            

Figure 5: segmentation of two di�erent beats; the results are accurate.

            

Figure 7: signal and analysing wavelet at low frequency resolution.

            

Figure 8: detection and replacement of a QRS complex.

            

Figure 9: Detection of P-wave onset and o�set using the maxima chains.


