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ABSTRACT

A novel signal analysis technique is presented and ap-
plied for the analysis of seismic data. The main task
of the method is the extraction of feature information
of a given timeseries. This task is accomplished by the
implementation of a speci�cally designed Genetic Al-
gorithm that is utilised for the evolution of conditional
sets. The term conditional set refers to a set of boundary
conditions. These boundary conditions must be full�lled
by subsequent samples of the timeseries. The imple-
mented algorithm was applied on seismic data in order
to investigate for the existence of conditional sets that
appear more frequently than others. It was found that
there exist conditional sets with high probability of ap-
pearance. Furthermore, it was found that some of the
conditional sets are followed by data samples that apper
small deviations from their mean value. It is proposed
that conditional sets that combine these two properties
(high probability of appearance and small deviation of
the next data sample) can account for short-term pre-
diction of seismic events.

1 INTRODUCTION

Real world signal analysis is a di�cult task due to a
number of reasons. Among them one has to consider the
dynamical complexity of the physical processes under-
lying the experimental measures, as well as the presence
of noise, either external or ambient. Thus, although
there have been major e�orts for the development of
automatic methods for �nding signi�cant and interest-
ing patterns in complex data, in general, this problem
remains open. A novel technique to face that kind
of problems was presented by Packard and co-workers
[5, 2]. This method utilises Genetic Algorithms (GA)
that evolve conditional sets. The main concept of this
method is the GA to �nd out conditional sets that ap-
pear more frequently than others in the data set under

consideration. The investigation of this task will allow
to extract the existence of any underlying dynamical
features and characteristics of the timeseries. In addi-
tion, for any existing conditional set the average and
the standard deviation of the next data samples (suc-
cessors of the conditional set) were calculated. If the
standard deviation of the successors is small compared
to the average of these samples, (i.e. the relative error is
small), then the particular conditional set can account
as a good short-term predictor of the next value of the
time series. The accuracy of this short-term prediction
can be quanti�ed by means the relative error. In this
manner, it is possible to obtain some information on the
structural characteristics and dynamical features of the
underlying physical system. The method can easily be
implemented on a parallel environment.

2 MATERIAL

The original data that were considered in the present
work refer to recordings of seismic activity in the Hel-
lenic region. These recodings (raw data) were prepro-
cessed in such a way that the time intervals (time gap)
between consequitive seismic events were estimated.
Thus, the data sets that were examined in the present
work refer to the time intervals of recordings of conse-
quent seismic events in the Hellenic region. An extract
of the generated time interval data set is shown in Figure
1.

3 THE GENETIC ALGORITHM

3.1 Conditions and Conditional Sets

Considering a data set of N samples xi; i = 1; : : : ; N , a
condition C is of the form:

Ci = (li < xi < ui) (1)

where li and ui are the lower and upper bounds of the
condition respectively.



Figure 1: An extract of 100 samples of the time-intervals
time series.

A conditional set S of length L consists of a number of
L conditions that are coupled with the logical operator
^ (Boolean AND). Thus, a typical form of a conditional
set consisting of four (L = 4) conditions is :

S = C1 ^ C2 ^ C3 ^ C4 (2)

An numerical example of a conditional set is the follow-
ing:

S = (340 < x1 < 470) ^ (580 < x2 < 610)

^ (782 < x3 < 944) ^ (210 < x4 < 250) (3)

3.2 Overview of the Genetic Algorithm

A GA consists of a population of individuals and
some genetic operators that apply on that population.
Mainly, two types of genetic operators are implemented:
reproduction (crossover) and mutation operators.
Schematically, in C++ pseudo-code, the GA operates

as follows:

Population:Setup();
while (not termination condition)
f

Population:F itness Estimation();
Population:Reproduction();
Population:Mutation();
g

Population:Report Results();

In brief, each conditional set S is considered as an
individual for the GA population. Individuals are ran-
domly setup. The lower and upper bounds of each one
condition of any conditional set are randomly selected
to be in the range of the minimum and the maximum

of the time series. In the following, the �tness of each
individual is calculated. The �tness of each individual
is an estimation of how good solution is this particular
individual of the problem under consideration. A more
detailed mathematical description of the �tness function
is presented in the following section (3.3). After the
setup procedure the individuals of the original genera-
tion are sorted in descending order with respect to their
�tness. The higher the individual's �tness, the more
probable that this particular individual will survive and
reproduce, i.e. it will mate with another individual.
Two selected mating individuals (parents) produce an
o�spring (child) for the next generation (reproduction
procedure). In the GA under study, reproduction is re-
alised by means of two di�erent crossover operators: the
one-point crossover and the uniform crossover. Descrip-
tion of the two crossover operators is given in section 3.4.
After the termination of the reproduction phase and the
generation of a new population of individuals, the mu-
tation operators are applied on each one condition of
each one o�spring. Description of the four mutation op-
erators implemented here is given in section 3.5. With
the end of the mutation procedure a new generation of
individuals has been created and the whole procedure
can be re-applied, begining with the estimation of the
�tness of the individuals of the new population.
As termination condition it can be considered the evo-
lution of the GA up to a given number of generations,
a convergence condition of the individuals, etc. It is be-
lieved that after a su�cient number of generations the
GA converges to the optimal solution of the given prob-
lem [1, 3, 4].

3.3 Fitness Function

A number of di�erent �tness functions were tested using
a number of di�erent GAs. The �rst of them refer to
the number of appearances of a given conditional set in
the timeseries. On the termination of that GA it was
found the conditional sets that appear more often than
others in the timeseries. Thus, considering F (Si) as the
frequency of appearance of a conditional set Si, the �rst
�tness function f1 is:

f1(Si) = F (Si) (4)

A second GA was used in order to �nd out the con-
ditional sets that are followed by recordings with the
smaller standard deviation. To obtain this task, an ad-
dition was made to the previous methodology: each time
a conditional set was found in the timeseries the next
value (successor) in the timeseries was saved; the stan-
dard deviation of all these successor values were calcu-
lated, and as �tness function was considered the inverse
of the standard deviation. Thus, considering �(Si) as
the standard deviation of the successor values following
the conditional set Si the second �tness function con-
sidered here is:



f2(Si) = �(Si)
�1 (5)

This second GA was able to reveal conditional sets
that are followed by data values with the smaller uc-
tuations.

3.4 Crossover Operators

The one-point crossover

In the application of the one-point crossover a num-
ber called crossover point is randomly selected, shar-
ing each parent in two parts. For the crossover point

stands that:

0 < crossover point < L (6)

where L is the length of the conditional set, i.e. the
number of conditions that constitute this individual.
The o�spring is generated by mixing the �rst part of
the �rst parent with the second part of the second par-
ent. To give a numerical example, assume S1 and S2 as
parents with L = 4:

S1 = (340 < x1 < 470) ^ (580 < x2 < 610)

^(782 < x3 < 944) ^ (210 < x4 < 250)

S2 = (248 < x1 < 311) ^ (461 < x2 < 503)

^(218 < x3 < 237) ^ (512 < x4 < 561)

and crossover point = 3, the generated o�spring is:

(340 < x1 < 470) ^ (580 < x2 < 610)

^(782 < x3 < 944) ^ (512 < x4 < 261)

The uniform crossover

On the other hand, using the uniform crossover, the o�-
spring is generated by mixing the even-numbered con-
ditions of the �rst parent and the odd-numbered condi-
tions of the second parent (counting of conditions starts
from zero). Thus, assuming again S1 and S2 as parents
the generated o�spring is:

(340 < x1 < 470) ^ (461 < x2 < 503)

^(782 < x3 < 944) ^ (512 < x4 < 261)

3.5 Mutation Operators

Four are the mutation operators used in the imple-
mented GA. The up-shift operator, the down-shift op-

erator, the expand operator and the shrink operator.

The up-shift operator

The up-shift operator increases the lower and the upper
bounds of a condition by the same amount, so that the
mean value of the condition is shifted to a higher value,
but the interval of the condition (i.e. the distance of the

upper bond from the lower bound) remains unchanged.
An example of the up-shift mutation is the following:

(580 < xi < 610)! (650 < xi < 680)

where the bounds and the mean value of the condition
were increased by 70.

The down-shift operator

The down-shift operator works in the opposite direction
by decreasing the lower and the upper bound of a con-
dition by the same value, so that the mean value of the
condition is decreased, while the interval of the condi-
tion remains unchanged. In the following example the
down-shift mutator decreases the bounds and the mean
value of a condition by 40.

(580 < xi < 610)! (540 < xi < 570)

The expand operator

The expand operator expands the interval of one con-
dition by increasing the upper bound and decreasing
the lower bound by the same value. The mean value of
the condition remains unchanged, as it is shown in the
folowing example:

(580 < xi < 610)! (550 < xi < 640)

where the condition was expanded by 30 in both direc-
tions.

The shrink operator

On the opposite of the expand operator, the shrink op-
erator shrinks the interval of a condition by increasing
the lower bound and decreasing the upper bound by the
same value. The mean value remains unchanged. Ex-
ample of the action of the shrink mutation follows:

(580 < xi < 610)! (590 < xi < 600)

where the condition's bounds were moved by 10 closer
to the mean value.

4 RESULTS

A number of runs of the GA's were performed on the
experimental timeseries. Typical results have the form:

(340 < x1 < 470) ^ (580 < x2 < 610)

^(782 < x3 < 944) ^ (210 < x4 < 250)! 5136

which means that the conditional set shown above was
found 5136 times in the data set. A plot of the frequency
of appearance of the �ttest conditional set (maximum



Figure 2: Evolution of f1, the frequency of appearance
F of the �ttest conditional set.

Figure 3: Evolution of the % relative error of the suc-
cessors of the �ttest conditional set.

�tness value of f1) per generation is shown in Figure 2.

With respect to the GA that considers the standard
deviation of the successor values as the �tness function,
typical results are of the form:

(340 < x1 < 470) ^ (580 < x2 < 610)

^(782 < x3 < 944) ^ (210 < x4 < 250)! 414� 7

which means that the average of the data values fol-
lowing the above conditional set was found 414, whereas
the standard deviation � of that values was 7, resulting
to a relative error about 1:7 %. A plot of the % rel-
ative error (�=average) of the successors of the �ttest
conditional set per generation is shown in Figure 3.

5 CONCLUSIONS

It is for the �rst time that a GA with the speci�c design
presented above is applied on seismic data. GA is well

understood as powerful searching tools, ideal for appli-
cation on problems characterised by high complexity,
as the extraction of structural and dynamical features
of real world timeseries. Although the above results
are preliminary, we believe that a further application
of the methodology extended above, fruitful, promising
and probably capable for short-term prediction.
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