
MODULATION CLASSIFICATION BASED ON A

MAXIMUM-LIKELIHOOD RECEIVER IN THE

CYCLIC-HOS DOMAIN

Pierre Marchand
�y
, Christophe Le Martret

��
and Jean-Louis Lacoume

�

� LIS-ENSIEG, BP 46, 38402 Saint Martin d'H�eres Cedex, France
y TEAMLOG, 6 Chemin des Pr�es, 38944 Meylan, France

�� Centre d'�ELectronique de l'Armement (CELAR), 35170 Bruz, France
email : Pierre.Marchand@lis.inpg.fr

tel : (+33) 4.76.82.71.04 fax : (+33) 4.76.82.63.84

ABSTRACT

A multiple hypothesis QAM modulation classi�cation task

is adressed in this paper. The classi�er is designed in the

framework of decision theory. A characteristic feature is ex-

tracted from the signal, and is compared to the possible the-

oretical features in the maximum-likelihood sense. This fea-

ture is composed of a combination between fourth-order and

squared second-order cyclic temporal cumulants. The com-

bination between cumulants of di�erent orders is intended to

bypass the incertainty about the power of the signal of inter-

est. As an application, we present simulated performance in

the context of 4-QAM vs 16-QAM vs 64-QAM classi�cation.

1 Introduction

The modulation classi�cation process consists in deter-

mining the modulation type of an intercepted signal cor-

rupted by noise and interferences. This is a challenging

problem that is of course relevant in some military co-

munication systems and that has been investigated for

several years. Once a signal is detected, the modulation

type and its parameters have to be determined in order

to select the proper demodulation scheme. One of the

classical ways to tackle with the problem of modulation

classi�cation is based on maximum-likelihood decision

theory. It consists in processing the log-likelihood func-

tion of the signal (or an approximation thereof) and

then comparing it to an appropriate threshold. This

approach has been proposed to classify QAM modula-

tions [3] and PSK modulations [2]. A simpler way to de-

rive a classifer structure relies on the pattern-recognition

concept. This second approach consists in extracting

\features" which are signatures of each speci�c signal

format. In many cases, the pattern-recognition tech-

niques are designed on a intuitive basis, and the atten-

tion is focused on practical implementation rather than

on theoretical background. However, it is possible to

formalize this approach by applying the rigorous frame-

work of decision theory. By comparison to the methods

proposed in ([3],[2]), the decision rule is then based on

the likelihood function of the features rather than the

approximated likelihood function of the signal. Such a

classi�er has been proposed in [10]. The decision rule is

based on a vector containing cyclic cumulants (possibly

of di�erent orders, possibly at di�erent cycle frequen-

cies). This method is probably well designed for FSK

signal classi�cation, but can unfortunately not achieve

QAM signal classi�cation if the power of the signal is

unknown.

The purpose of this paper is to propose a classi�er fol-

lowing the principle proposed in [10], but whose decision

rule is based on a new feature, so that QAM signal clas-

si�cation is possible, even without estimating the power

of the signal. Our discriminating feature is a vector con-

taining the samples of mixed-orders cyclic cumulants of

the signal (namely, fourth- and second-order properly

mixed cyclic cumulants). The idea of mixing cumulants

of di�erent orders to classify QAM signals was �rst ini-

tiated in [5]. Then it was successfully applied to clas-

sify two QAM modulations in both cyclostationary [7]

and stationary [6] contexts. This approach uses a novel

statistic which is neither a cumulant nor a moment, but

is chosen in order to achieve the higher discrimination

as possible. It enforces the idea that several orders must

be combined to achieve modulation classi�cation, which

was already pointed out in a di�erent manner in [8].

Generalizing the ideas of [7] and [6], we design in this

paper a multiple hypothesis classi�er in a rigorous deci-

sion theory framework. Besides, it should be underlined

that unlike [10], [7], [6], we take here into account the

lack of knowledge about the power of the noise. The

classi�er is then applied to the 4-QAM / 16-QAM / 64-

QAM problem.

The paper is composed as follows. In section 2,

we recall the expressions of fourth- and second-order

cyclic correlations for digital modulations. The theory

of higher-order cyclostationarity has been developped

mainly in [1] and [9]. We will adopt here a stochastic

framework and notations well suited for complex-valued

random processes. In section 3, the basic idea on which

the classi�er is based is explained, and the general struc-

ture of the algorithm is given. Simulations are provided

in section 4.



2 Preliminaries

2.1 Signals of interest

The modelling adopted in this paper is based on the

stochastic theory of random processes. In our study,

we are interested in N -QAM modulation classi�cation

(i.e. N -states Quadrature AmplitudeModulation). The

discrete-time analytic signal representation for these

modulations is:

x(t) = ei(2�fct+�0)
X
k

skq(t� kTb � t0) (1)

where t 2 Z, fsk = ak + i:bkgk2Zis a complex-valued,

zero-mean, and i.i.d. symbol sequence with values in a

N -dimensional set, Tb is the symbol duration, fc is the

carrier frequency, q(t) is the real-valued pulse function,

and t0 is a non-random time shift. In this paper, we

do not stationarize the signals, and consequently, time-

dependency must be taken into account when expressing

the temporal cumulants of (1). In other words, x(t) is

modeled as a cyclostationary process.

2.2 Cyclic multicorrelations

Let Cx;p+q;p (t; � ) be the (p+q)th-order cumulant-based

correlation of the process x(t), de�ned with p non-

conjugated terms and q conjugated terms, as in [4]:

Cx;p+q;p (t; � ) =

Cum[x(t); x(t+ �1); :::; x(t+ �p�1);

x�(t� �p); :::; x
�(t � �p+q�1)]:

(2)

Since x(t) is almost-cyclostationary, there are at most

countably many values of � for which the so-called (p+

q)th-order cyclic correlation, de�ned by:

c�x;p+q;p(� ) = lim
T!+1

1

T

T�1X
t=0

Cx;p+q;p(t; � ) exp(�i�t) :

(3)

is non-zero.

Let us precise the expressions at order four (p+q = 4).

We will consider the de�nition in which there are as

many conjugated as non-conjugated terms (p = q = 2).

Applying (3) to the process (1), it can be readily shown

that the modulus of the cyclic tricorrelation (also called

fourth-order temporal cumulant [1],[9]) is given by:

��c�x;4;2(� )�� = j
Cs;4;2

Tb

t=+1X
t=�1

q (t) q (t+ �1) q(t � �2)q(t� �3)

� exp(�i�t)j (4)

where Cs;4;2 is the stationary fourth-order cumulant of

the random sequence fskg: Cs;4;2 = Cum[sk; sk; s
�

k; s
�

k].

In (4), it is necessary to consider the modulus, in order

to eliminate terms depending on t0 and fc, which are a

priori both unknown. Since we chose p = q, the phase

of the carrier, �0, has no in
uence. Consequently, the

cases coherent and incoherent de�ned in [3] are strictly

equivalent with our formulation.

Similarly, at order two, the modulus of the cyclic cor-

relation of the process (1) is:

��c�x;2;1(� )�� = j
Cs;2;1

Tb

t=+1X
t=�1

q (t) q (t� � ) exp(�i�t)j (5)

where Cs;2;1 = Cum[sk; s
�

k].

3 Classi�er design

3.1 Problem statement

Classifying an observed signal y(t) in one of M classes

of possible modulation types mod1,...,modM, may be

formulated as an M -ary testing problem between

H1,...,HM given by

Hi : y(t) = a � xi(t) + n(t) i = 1; :::;M (6)

where the modulation type of xi(t) is modi, and n(t)

is an additive white gaussian stationary noise with un-

known variance. The multiplicative factor a is intro-

duced in order to formalize the lack of knowledge about

the power of the signal (or, equivalently, the power of

the noise). Thus, a is a random parameter independant

of b(t), and whose probability density function pA(a) is

unknown.

Building a classi�er on characteristic features rather

than on the signal itself is equivalent to re-formulate the

problem (6) as follows:

Hi : brT = u � ri + eT i = 1; :::;M (7)

where ri corresponds to a vector containing the theo-

retical characteristic features of xi(t). The vector brT is

the estimation of the features over T samples of the re-

ceived signal y(t). The vector eT is the corresponding

estimation error. The random parameter u with unkown

probability function pU(u) is linked to the parameter a

in a manner depending of the features chosen. The pa-

rameter u is independant of eT .

The optimal classi�er in the maximum likelihood

sense is the one which decides \Hk true" if the con-

ditional probability function of brT , pbRT j Hi

(brT j Hi) is

maximum for i = k.

The method proposed in [10] uses a vector ri consist-

ing of true cyclic multicorrelations, e.g.

ri =
�
c�1xi;p1+q1;p1(� ); c

�2
xi;p2+q2;p2

(� )
�
: (8)

Since the noise n(t) is stationary, if one includes in

(8) only non-zero cycle frequencies, then the theoreti-

cal vector ri for y(t) is exactly the same as for xi(t).

Since the estimators of cyclic multicorrelations are con-

sistent and asymptotic normal [9], it follows that under

Hi, eT is asymptotically zero-mean, multivariate com-

plex gaussian with covariance matrix �i. We empha-

sized in section 2 that the cyclic multicorrelations of all



the QAM signal are the same to within a multiplicative

factor. Consequently, if the vectors ri were de�ned as in

(8), they would be all proportional, and in this case, a

maximum-likelihood classi�er would require the knowl-

edge or the estimation of the power of the signal. We

propose another disciminating vector ri for which this

requirement is not necessary.

3.2 The new feature

The feature we will use is de�ned as:

ri =
eri
kerik , eri =

����c2�=Tbxi;4;2
(a�; b�; c� )

���+ �

���c2�=Tbxi;2;1
(� )
���2� :
(9)

where (a; b; c) 2 Z, � 2 R and � = 0; :::; Tb: Hence

ri is a (Tb + 1)-dimensional vector, consisting in a nor-

malized combination of a cyclic tricorrelation and a

squared cyclic correlation, both at the �rst cycle fre-

quency 2�=Tb. The tricorrelation is considered only on

a domain restricted to a line containing the origin, and

parametrated by a; b; and c. One can qualify ri as a

\generalized fourth-order function", because the global

order is four, but is it neither a cumulant nor a moment.

This new fourth-order function gives raise to vectors ri
that are not proportional when i varies. The reasons for

these choices are detailed in [5], [6], [7].

The parameters a; b; c; and � will be adjusted to max-

imize the distance between the ri's, so that the mini-

mum achievable probability of error be as low as possi-

ble. Since the vectors ri de�ned in (9) have all the same

norm, it is clear that the distribution is optimum if their

isobarycentre

s =
1

M
(

MX
i=1

ri) (10)

is null. Consequently, the optimum parameters a; b; c;

and � should ideally minimize the norm of the iso-

barycentre:

(a; b; c; �)opt = argminksk : (11)

Since krik = 1 8i, one can easily see that this condi-

tion is equivalent to

(a; b; c; �)opt = argmin
2

M (M � 1)

MX
i=1

MX
j=i+1

�i;j

, argmin� (12)

where �i;j = rir
(T )
j . Note that � can be interpreted as

the mean of all the correlations that one can de�ne in

the set fr1; :::; rMg:

3.3 Decision rule

In this section, we show that under the condition that

the vectors ri are normalized, the optimal decision rule

for the M -ary testing problem de�ned in (7) does not

depend on the unknown parameter u. The ML clas-

si�er maximizes the conditional probability function

pi , p
bRT j Hi

(brT j Hi). It can be readily shown that

pi =

Z
pU (u) � pbRT j U

(brT ju;Hi)du: (13)

Since eT is asymptotically gaussian in (7), maximizing

pi is asymtotically equivalent to maximizing

p0i =

Z
pU (u) � exp

 
�
kbrT � urik

2

�2

!
du: (14)

Note that to derive (14), we made the approximation

�i = �2I, which of course leads to a convenient but

suboptimal scheme. Now, it is obvious that if f(t) >

g(t), then 8t;
R
f(t)dt >

R
g(t)dt. Hence, maximizing

p00i = exp

 
�
kbrT � urik

2

�2

!
(15)

will guarantee that p0i is maximized. Since krik is in-

dependant of i, it is straightforward to see that max-

imizing p00i is equivalent to maximizing brTr(T )i , which

corresponds to the classical correlation receiver.

Finally, the classi�er will decide that the modulation

type is modk whenever

brTr(T )k > brTr(T )i 8i 6= k: (16)

4 Application to 4-PSK vs. 16-QAM vs. 64-

QAM classi�cation

4.1 Computation of optimal parameters

We suppose now M = 3, mod1 = 4-QAM, mod2 =

16-QAM, and mod3 = 64-QAM. In this case, the corre-

lation coe�cient de�ned in (12) becomes:

� =
1

3
(r1r

(T )
2

+ r1r
(T )
3

+ r2r
(T )
3

): (17)

This coe�cient is easily computable using (9), (4) et (5)

with:

Cs;4;2 = �1 Cs;2;1 = 1 for 4-QAM

Cs;4;2 = �0:68 Cs;2;1 = 1 for 16-QAM (18)

Cs;4;2 = �0:619 Cs;2;1 = 1 for 64-QAM

We also suppose that the pulse function of the mod-

ulations is given by: q(t) = 1 for t = 0; :::; Tb � 1 and

q(t) = 0 elsewhere.

The exhaustive minimization of (17) is then per-

formed thanks to the SIMPLEX algorithm, which lead

to the following optimal parameters:

(a; b; c; �)opt = (0; 1; 1;�2:867) (19)

and the corresponding correlation coe�cient is given

by:

�min = 0:28 (20)



Note that this correlation coe�cient is a little higher

than the correlation coe�cient exhibited in the case of

a binary hypothesis test (�min = �0:06, see [7]). This

will result in some inevitable degradation of the perfor-

mance.

4.2 Simulations

The performance of the classi�er has been simulated by

Monte-Carlo runs.

Simulations have been performed on synthetic data in
white gaussian noise for two di�erent signal to noise ratios

(SNR=5 dB and 10 dB; for SNRs under 5 dB, the classi-

�er exhibited poor performance, even for large sample sizes).
The SNR is de�ned as follows:

SNR = 10 log

P
i
x
2(i)

P
i
n2(i)

(21)

The number of transmitted symbols Ns varies from 64 to

4096 symbols, with Tb = 10 (i.e. T = 640 to 40960 samples).

For each couple (SNR, Ns), 500 di�erent signals (di�erent

symbol sequences and noise samples) are generated for each

of the three modulations. The �gure 1 gives the performance

(probability of correct classi�cation in %, or Pcc) obtained

for di�erent Ns and for a given SNR.
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Figure 1: Performance of the classi�er

5 Discussion

As shown by the simulations, the classi�er is not reliable

for sample sizes less than 1024 symbols, for the SNRs

tested here. Due to lack of space, the confusions ma-

trices are not shown here, but if we look precisely at

them, it is obvious that most of the classi�cation errors

are due to confusion between 16-QAM and 64-QAM.

This is because the value of their fourth-order cumu-

lants are very close (0.68 vs. 0.619). Theoretically, it

could be worth imagining a discriminating feature in-

volving sixth-order statistics, but it may be not reason-

able from a estimation point of view. However, to our

knowledge, the feature introduced in this paper is the

only one that can achieve QAM modulation classi�ca-

tion in a cyclostationary context.
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