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ABSTRACT

Identification of the parameters of non-minimum phase AR
processes is formulated in the framework of the Super Ex-
ponential blind deconvolution scheme described in [4]. We
show that the vector of the AR parameters lies in the range of
a suitable (rank one) matrix formed using second and higher
order statistics measured from the received data. The result-
ing algorithm is similar to the blind deconvolution scheme
presented in [5], which here is shown to be directly obtained
from the optimality criterion underlying the Super Exponen-
tial blind deconvolution algorithm.

1 Introduction

’0; n this contribution, we address the problem of
the estimation of the parameters of autoregres-
\ v“ sive (AR) discrete-time processes (series), i.e. pro-
cesses observed at the output of an “all-pole” linear and
shift-invariant (LSI) transformation driven by i.i.d. series.

When the AR modeling is for purposes of power spectral
density (PSD) estimation, the phase of the underlying LSI
transformation is not of interest and the celebrated Yule-
Walker equations solve the minimum (and the maximum)
phase case(s).

On the other hand, estimation of the phase of such IIR
transformations has stimulated the interest of resarchers
since [2], and it still receiving great attention nowadays (see,
for instance, the contributions to the last IEEE Workshop on
Higher Order Statistics [1]).

Herein, an estimation procedures of parameters of (possi-
bly non-causal) non-Gaussian AR series is described which
explicitely makes use of higher order statistics.

In particular, the structure of a rank-one matrix of higher
order cross-cumulants between the AR series and the driv-
ing i.i.d. noise is exploited in an iterative blind deconvolu-
tion scheme, since all-pole stable IIR transformation are in-
verted (deconvolved) by FIR filters of suitable orders whose
output is nothing else that the driving i.i.d. non-Gaussian
noise.

The resulting algorithm is derived using the paradigm il-
lustrated in [4] to obtain the so-called Super Exponential
blind deconvolution algorithm and it results to be expressed

as an iterative search of the unique eigenvector of a suitable
matrix involving both second-order and higher order statis-
tics of the received data.

Interestingly enough, it assumes the same form of the so-
called EigenVector Algorithm described in [5], which here
is revisited and rederived in the framework of the SE blind
deconvolution.

2 Non-Minimum Phase AR Identification

Let us consider the following AR model
zn] ={H(q)} - wln] @

where w[n] is a zero-mean, non-Gaussian i.i.d. series with
variance o2, {H (q)} is the linear and shift-invariant oper-
ator!associated to the stable and (possibly) non-causal, Lin-
ear and Shift Invariant (LSI) transformation described by the
following all-pole transfer function of order N
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normalized to have a unit norm denominator polynomial,
ie. N jaZ=1.

The inverse system exists if poles are not allowed onto
the unit circle; it is given by a FIR equalizer of order NV

N N
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Within a (complex) scalar factor, it is the (unique) stable
point of the so-called Super Exponential (SE) blind deconvo-
lution algorithm described in [4]. With reference to fig.1, the
SE blind deconvolution algorithm iteratively obtains an esti-
mate f; (at iteration 4) of the equalizer coefficients such that
(the magnitude of) a higher order cumulant measured at the
output of the equalizer s[n] is maximized, under a quadratic
constraint on f;[n]. Convergence of the SE algorithm is un-
derstood from the fact that the overall channel+equalizer

IFor the sake of readibility, we have indicated by ¢ the “unit delay”
operator, ie. {g*} - z[n] e i — k]
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Figure 1: Super Exponential blind deconvolution scheme.

impulse response c;[n]=h[n] * f;[n] is “spiked and spiked”
as the iterations proceed.

For the sake of comprehension of the following develop-
ments, the SE algorithm relative to the maximization of the
fourth order cumulant is briefly summarized in the case of
real channel and signals. The input series w[n] is supposed
to have non-zero fourth-order cumulant 2 .

The equalizer coefficients are obtained iteratively solving

the following system of equations:
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where ||f;|;=f;[l] is a wunit norm vector which
collects the equalizer coefficients at iteration ¢,
[|IRx||gm =Rk — m]|=E{z[k]-z[m]} is the covari-
ance matrix of the observed AR series z[n], the deconvolved
series has been denoted by

N
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and the vector | \néfi)x\ lm = kD, [m] collects the diagonal

slice of cross-cumulants of order (3, 1)

5] L cum (s s s o — )

To exploit the structure of the solution f; at convergence,
let us express the generic term of the r.h.s. of (2) as follows:
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This expression allows for rewriting (2) in a form which we

will exploit in the sequel. Introducing the rnatriXKgi)X of

cross-cumulants of order (2, 2)

|K3&um=meimm&1wwm—mxm—w)
we can rewrite (2) as follows:

f/ =R;' K22 f
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Due to the normalization, (3) constitutes the generic itera-
tion of the power method [3] applied to the eigenequations

A f=R'-KZ?.f (4)

where the matrix K&,z;f) is updated at each iteration, using
the deconvolved series s;[n| as an estimate of wn].
Let us now prove the following:

Lemma I
The matrix of cross-cumulants K( 2) has rank one for AR
series x[n] and its generic element is given by

(2 2) [m, 1| =r2 - h[~I] - h[-m].

Proof: Recalling the i.i.d. nature of the input series w(n],

the generic element of the matrix K(2 2) takes the following
form:

K22, l] lef um (w[an[n},x[n — 1], z[n — m])

:f: h[i]-h k}~cum(w[n],w[n},w[nli],w[nmk‘D
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Interestingly, this implies that the useful solution of (4) is
the eigenvector corresponding to the unique non-zero eigen-
value of the matrix R - Kﬁff).

The previous Lemma allows for proving the following:

Proposition 1
The (unique) non-zero eigenvalue \ of the matrix

R, KEY
is equal to the ratio k% /o2 .
Proof: Let us first write the eigen-equations (4) as follows
Ry -(\-f) =K&? .f (5)

where, due to Lemma I, A assumes the role of the unique
eigenvalue of the matrix R K(2 2) , since the matrix Ry
is full rank.

Now, from Lemma I, the generic element of the r.h.s. of
(5) can be expressed as follows:
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where the condition h[n]* f[n]=d[n] of perfect equalization
(inversion) has been invoked in the last equality.



Introducing the vector of cross-correlations
[Pl = E{wln] - z[n — m]} = o7, - h[-m]

we can rewrite (5) as follows:
4
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Within a scalar constant, these are the Wiener equations
which obtains the inverse filter f; due to the unit norm as-
sumption of the AR model coefficients, ie. Zzl\io flll=1,it
readily follows )\:nﬁ. / 0’3., since Ry -f = ry.0

Stemming out on this result, we propose a different
and new algorithm which is based on solving the eigen-
equations

A-fi=R-KP) -, ©6)

using the power method without updating the matrix of
cross-cumulants at each iteration! Simulations show that
faster convergence is gained w.r.t. the SE algorithm, even
counting the computations needed to obtain the eigenvec-
tor in (6).
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Figure 2: EVA blind deconvolution scheme.

It is worth mentioning that a so-called Eigenvector Algo-
rithm for Blind Equalization (EVA), described in [5], results
in the same equations (6) for the unknown equalizer coe-
eficients. It is based on a mathematical formulation, ap-
peared in [6], where, with reference to fig.2, the output r[n]
of a a priori fixed “reference system” g[n] is used to ad-
just the equalizer according to an “equalization quality”
measured through the (magnitude of the) cross-cumulant
|cum(s;[n], s;[n], 7[n],r[n])|, under a quadratic constraint
on f;[n]. Using the equalizer estimate at iteration ¢ as a ref-
erence, i.e. g[n]= f;[n], the eigenequations (6) are obtained.

Quoting from [5], pg.14, “(the algorithm of Shalvi and We-
instein [4]) turns out to be a special case of EVA ... note that
[4] can be derived from EVA but not viceversa.”

Here, we have shown that, within the framework of all-
pole IIR system identification, EVA is rather obtained form
the paradigm described in [4], i.e. the maximization of the
(absolute value) of an higher (than two) order cumulant mea-
sured at the output of the equalizer.

Inter alias, every extension or generalization of the Super
Exponential algorithm is directly transposed to in a form
similar to (6), where the matrix of the higher order cross-
cumulants assumes a suitable form. For instance, using the

framework of Bussgang deconvolution [7], a generalization
of the Super Exponential algorithm is described in [8, 9],
where optimal weighed linear combinations of higher order
cumulants, tuned to the transmitted non-constant modulus
constellation, are employed to minimize the final mean ISL

3 Simulation Result and Conclusion

As an example, we consider the estimation of the parameters
of a fourth order all-pole IIR filter having specular poles
ret7% and r~'e*99 for r =0.75 and 6 = 80deg; the input
series is drawn from a binary +1, zero-mean, i.i.d. series.
All the statistics are measured from sampling at symbol rate,
i.e. no redundancy due to fractional sampling is exploited.

Figs. 3 and 4 report the mean Inter Symbol Interference (ISI) >
obtained considering the inverse filter (equalizer) estimated
from both the Super Exponential algorithm (labelled SW) and
the described “Power Method” (labelled PM) for NSR values
of 0 and -30dB, respectively. Each value of mean ISI has
been obtained averaging over 25 Monte Carlo runs and using
sample statistics drawn from 200 observations. We see that

2181 is defined as 1S1=3", c%[n]—1, being c[n] def h[n]* f[n] the
overall (equalized) 151 transformation, normalized to have c[O} =1.
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Figure 3: Mean ISI vs. iterations (NSR=0). Real channel and bi-
nary symbols.
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Figure 4: Mean ISI vs. iterations (NSR=-30dB). Real channel and
binary symbols.
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Figure 5: Mean ISI vs. iterations (NSR=0). Complex channel and
V27 symbols.
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Figure 6: Mean ISI vs. iterations (NSR=-30dB). Complex channel
and V27 symbols.

the estimation accuracy is roughly the same but the method
herein described converges faster.

Another example concerning with a excitation sequence
drawn from a complex valued constellation is reported in
figs.5,6,7 and 8, where a fourth-order, complex all-pole IIR
channel is considered; the poles are +re?®! and +r—'eJ%2
for r =0.8, ¢y =7/6 and ¢2 = 7/3. In figs.5 and 6 a V27
(Constant Modulus) constallation is considered, whereas in
figs.7 and 8 the input series is drawn from a V29 (non Con-
stant Modulus) constellation; sample statistics are drawn
from 500 observations. These latter figures show the ac-
curacy obtained using the power method with fourth-order
cumulants (labelled PM4) in comparison with the power
method with a linear combination of fourth-, sixth- and
eighth-order cumulants (labelled PM468), whose weights are
optimized to minimize the ISI [8, 9]. It is worth noting that
sensible reduction of ISI can be gained using higher order cu-
mulants when non Constant Modulus constellation are con-
sidered, as indicated in the statistical analysis performed in
[4, 8, 9].
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Figure 7: Mean ISI vs. iterations (NSR=0). Complex channel and
V29 symbols.
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Figure 8: Mean ISI vs. iterations (NSR=-30dB). Complex channel
and V29 symbols.
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