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ABSTRACT

This paper addresses the problem of detecting the
presence of multiplicative noise, when the information
process can be modelled by a parametric AR process.
A suboptimal detector based on higher-order cumulants
(HOC) is studied. This detector consists of filtering the
data by the fitted AR filter. HOC of the residual data
are shown to be efficient for the detection problem.

1 INTRODUCTION AND PROBLEM FOR-
MULATION

Many signal processing applications deal with multi-
plicative noise models. For instance, harmonic sig-
nals corrupted by multiplicative and/or additive noise
have been intensively studied for random communica-
tion models (fading channels), Sonar, Doppler systems.
Harmonic signals, as well as many other processes (in-
cluding processes with continuous spectra), can be mod-
elled accurately by AR processes. The signal parame-
ter estimation problem then reduces to the estimation
of AR parameters. Appropriate techniques for AR es-
timation in additive noise environment can fail dram-
matically in multiplicative noise environment, and vice-
versa. This paper studies a statistical test for detecting
the presence of multiplicative noise, when the informa-
tion process can be modelled by an AR process. A sim-
ilar problem was studied in [7]. However, the proposed
algorithm was restricted to discerning random from con-
stant amplitude harmonics. The detection problem is
the following composite hypothesis testing problem:

Ho': y(n) =yo(n) £ 2(n) + bo(n) )
Hy : y(n) =yi(n) £ e(n)z(n) + br(n)
z(n) is an AR(p) process driven by an iid sequence g(n):
o) = = 3 aje(n =) + o)

bo(n) and by(n)are the additive (possibly colored)
Gaussian noises. e(n) is an iid multiplicative noise,
whose distribution is unknown. The sequences g(n),

bo(n), bi(n), and e(n) are mutually independent. Op-
timal detectors based on the Neyman-Pearson criterion
can be derived, when statistical properties concerning
signal and noises are avalaible. Such a detection problem
was studied in [6], for the detection and the classifica-
tion of signals corrupted by additive and multiplicative
noise. However, the Neyman-Pearson detector (NPD)
can lead to intractable computation and of course, the
signal and noises pdf’s have to be known. Consequently,
the NPD cannot be derived for the multiplicative noise
detection problem, since z(n) and e(n) have unknown
pdf’s. This paper studies a suboptimal detector based
on Higher-Order Cumulants (HOC).

When the AR process z(n) is Gaussian (i.e. g(n)
Gaussian), the observed signal y(n) is Gaussian under
hypothesis Hy and non-Gaussian under hypothesis H;.
Any Gaussianity test such as Hinich test [4] can then be
used for the multiplicative noise detection problem . Un-
fortunately, when the AR process z(n) is non-Gaussian,
Gaussianity tests are not relevant for our problem, since
the observed signal y(n) is non-Gaussian under both hy-
opthesis. This paper studies a suboptimal multiplicative
noise detector based on HOC. This detector does not
require a known distribution for the AR process z(n).
However, it is restricted to non-Gaussian process z(n).
The proposed detection algorithm is a four-step proce-
dure, which can be summarized as follows:

1. Estimate the AR parameters using HOC computed
at appropriate lags.

2. Filter the data y(n) by the estimated AR polyno-
mial to form the residual process z(n).

3. Compute the HOC of z(n) at non-zero lags.
4. Compare these HOC with zero, and take a decision.

2 AR PARAMETER ESTIMATION

Denote p, = E [u(n)] the mean of a random process
u(n), and C¥(p) its kth-order cumulant computed at lag
p={(p1,p2...,pk-1)- It is well known that higher-order
cumulants (k > 2) are blind to Gaussian processes. Con-
sequently, the multiplicative noise detection problem (1)
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yields:

Hy: C(Ig(p) = c’@:o (P) = C;:(p), (2)
Hy - Ci(p) = ¥ (p) = CE(0),

where ez denote the process e(n)z(n). HOC of multi-
plicative processes were studied in [5]. In particular, the
following property was obtained:

Ci®(p) = pECE(p) Vp € Sk 3)
where

Se={p/pi #0Vie {1,....,k—1}, p; # pj for i # j}

This section assumes u, #* 0. The proposed algorithm
can be modified for zero-mean multiplicative noise (see
section 5). Eq. (3) shows that kth—order cumulants of
y(n) computed at specific lags (p € Si) are proportional
under both hypotheses Hp and H;. Consequently, AR
parameters can be determined under both hypotheses
from the well-known kth—order Yule-Walker equations:

14
3" a;C¥or = G, p2,- - pk-1) = —CR(p) ,¥p1 > 0 (4)

j=1
However, lags p have to be chosen carefully such that:

A) eq. (3) is satisfied for any p = (p1 =74, P2, - -+ Pk—1)s
Vj =0,...,p, i.e. p € Sk, which implies p; # j,
VJ € {0)71)} and P # Pt +]9 VJ € {07"'7p}:
Vi€ {2,...,k —1}. For example, we could choose

pp = ptl...,ptl+m
pm = p+m+lLle{2,... k-1}

for some m > p.

B) the Toeplitz matrix obtained by concatenation of
(4) is full-rank.

Condition A) can be satisfied by removing the lines
involving C¥(p), p ¢ Sk in eq. (4). Condition B) can be
fulfilled by collecting m = p(p + 1) cumulant slices (see
[2] for a similar problem).

Define Ci(p) as the Toeplitz matrix whose first row
is

(Cg(p’pZa v 7Pk—l),- .. vclf(17p2) .. -,Pk—l))
and first column
(Clt(p) P2,y )pk—l), vy CI:(p+ m, p2,.. 'vpk—l))T
Denote
Ek(p) = (Cz(P+1aP2,--',Pk—1)y--',

,pe-1))"

AR parameters are obtained from the following ma-
trix equation:

Ci(p)-(a1,...,a5)T = —ci(p) (5)

Several remarks are now appropriate:

., CElp+14m,p2,...

1. In practice, sample cumulants replace the theoreti-
cal cumulants for AR parameter estimation.

2. eq. (5) was derived assuming that p is known. How-
ever, eq. (5) can be easily modified to yield unique
AR parameters when an upper bound p of the AR
order is avalaible.

3 MA DETECTOR
Denote zi(n) the output of the FIR filter with Z-

P

transform A (z) = 3 axz~* driven by y; (n). The de-
k=0

tection problem can be rewritten as:

Ho s (n) = 20(n) = 9()+ 3 asboln =)

H : 2(n) = z1(n) =zp:0 aje(n —j)z(n — j) (6)

J=
P
+ 3 ajbi(n—j)
3=0

Eq. (6) shows that 1) 20(n) is the sum of a Gaussian
MA(p) sequence and an iid non-Gaussian sequence g(n).
Consequently, the kth-order cumulants (k > 2) of zo(n)
are zero except at lag p = 0; 2) 2;(n) is the sum of a
Gaussian MA (p) sequence and a non-Gaussian and non-
linear sequence, whose kth-order cumulants are non-zero
for a specific set of lags.

It is well-known that the parameters (6;);_, ., of
a non-Gaussian M A(p) process u(n) can be uniquely
identified from the kth-order cumulant vector

A U g . T
z=[Ck(pr]70a“~70)/]=O,...,p]
. CL (9,3,0,-,0 . . ]
(since 6; = E P55, 1< <p, 0o = 1). Using basic

properties of kth-order cumulants, the following binary
hypothese testing problem can be considered:

Hy:C:=Cr=0 ™
Hi:Ci=Ca #0

Denote é; the vector obtained by replacing the true
cumulants in C# by their usual estimates computed with
N samples. The asymptotic statistical behavior of the
HOS vector estimate Cf, is:

vNC; ~ N (0,%0)
VN (8;-Cp) ~ N (0,3) ®)

where ¥y and ¥; are two matrices independent of N.
The asymptotic statistics of Cj can be used to de-
rive kth-order cumulant based likelihood ratio detectors,
when parameters £y, £, and C;' are known. When
these parameters are unknown, the multiplicative noise
detection problem defined in (7) is a composite hypoth-
esis test. Assume that M independent realizations of

C: (denoted (Az,j). ) are available. These M

1=4y00




measurements can be obtained from one single signal
by segmentation. This segmentation procedure con-
sists of considering a N-sample signal as M segments
of K samples (with N = MK). Define C and S the
sampled mean and covariance matrix of the sequence

62 ) :
( ki)i=1,..M

— 1 &
C = 720G )
Jj=1
M
~ 1 P — ~. T
5 = 2 (6-9) (@ -0)
Jj=1
Using the  asymptotic normality of  vec-

~ ~ T

tor (Cz,l, - G}, M) , the generalized likelihood ratio
detector for the detection problem (7) is defined by:

Ho rejected if T2 = MC S-'C>Xx  (11)
)\ is a threshold which can be determined from the distri-
bution of T2 under the null hypothesis and a fixed prob-
ability of false alarm (PFA). Giri [3] showed that the
statistic ¢ 1\1/\1/[—_11;7 T2 has an F-distribution with (1, M —7)
degrees of freedom, under the null hypothesis, where 7
denotes the size of vector C (T = p+ 1). Moreover, the
distribution of U—I/‘I”-:‘{FT2 is a non-central F-distribution
with (7, M —T) degrees of freedom and non-central para-
meter v = MK (C;‘TEflczl), under hypothesis Hj.
The probability of detection (PD) can then be obtained
from the PFA as follows:

_ (M-1)1 . r _
A = S Mn 0 (1L - PFA)
PD = 1-f[r,M-r,v] ((—AAHFA) (12)

where f [dy, dg, 1] () denotes the cumulative distribution
function of a non-central F-distribution with d; and
dy degrees of freedom and non-centrality parameter u,
and f~1[dy,d2, p](.) its inverse.

It is interesting to note that eq. (6) was derived as-
suming that the AR parameter vector g is known. In
practical applications, this vector is unknown and has
to be estimated using the procedure described in sec-
tion 2. The kth—order cumulant vector Cf, is then esti-
mated by cumulants of the output of the FIR filter with

~ P
Z-transform A(z) =3 @xz~* driven by yi(n). Con-
k=0
sistency of sample cumulant estimators guarantees the

convergence with probability 1 of @k to ak [2].

4 CASE OF ZERO-MEAN MULTIPLICA-
TIVE NOISE

If the multiplicative noise e(n) is zero-mean, the hypoth-
esis testing problem (2) can be expressed as:

Hy: CY(p) = C(p) = Ci(p), VP E Sk

H:Cip) = Ol =0,  VpeS )

Since C¥ (p) 1s asymptotically aussial, and Cg\p) 7 v,
the problem (13) is similar to (7), with interchanged
hypotheses. Thus, the AR parameter estimation and
the filtering are not necessary, since a statistical test can
be developed directly on the cumulants of the received
data y(n) using a signal segmentation, as for problem

(7)-
5 SIMULATION RESULTS

Many simulations have been performed to validate
the theoretical results. Fig’s 1, 2 and 3 show
the first detector Receiver Operational Characteristics
(ROC’s) for three AR(4) processes with poles p1 =
[0.1e+97/4;0.3¢277/3], pp = [O.lSeij"/4;O.356ij"/3],
p3 = [0.2e%37/4;0.4¢*77/3]. The number of samples is
N = 10000, and the number of slices is M = 7. The
input sequence is a zero-mean iid exponentially distrib-
uted process g(n), with variance 02 = 1. by(n) and by (n)
are zero-mean Gaussian processes with unit variance.
The multiplicative noise e(n) is an exponentially distrib-
uted sequence such that y, = 1.The signal to noise ratio
between the signal z(n) and the multiplicative noise e(n)
is SNR, . = 0dB (fig. 1), SNRs,e = 10dB (fig. 2) and
SNR, . = 20dB (fig. 3). It can be noted that the detec-
tor performance is not very sensitive to SNR; .. Fig. 4
shows the second detector ROC’s (with zero-mean mul-
tiplicative noise), for the same AR(4) processes, except
pe =1, pe =0, and N = 1000. The performance is
similar to those obtained in fig’s 1, 2, and 3. However,
it is interesting to emphasize that the last results have
been conducted with N = 1000. Moreover, it should be
noted that the second detector ROC’s are unsensitive
to the multiplicative noise parameters. Indeed, eq. (12)
show that the theoretical performance only depends on
parameter v (which does not depend on the multiplica-
tive noise parameters, since hypotheses Ho and H have
to be interchanged).

6 CONCLUSION

This paper studied two multiplicative noise detectors.
The information signal was modelled by a non Gaussian
AR process. In the case of a non-zero-mean mul-
tiplicative noise, the AR parameters were first esti-
mated using appropriate higher-order cumulants. The
data were then filtered by the fitted AR filter. An HOS-
based detector on the residual data was finally devel-
oped. In the case of a zero-mean multiplicative
noise, the detection was achieved using the cumulants
of the received signal (the AR estimation procedure was
not necessary). The paper was restricted to iid multi-
plicative noise. However, the detectors can be general-
ized to colored multiplicative noise [1]. Moreover, it can
be noted that the proposed algorithms can be adapted
to ARMA processes. Indeed, the AR estimation can be
conducted using cumulants computed at different lags.
After filtering, the residual process under hypothesis Hy
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Figure 1: ROC’s for an AR(4) process with poles p1, p2,
p3 - SNRz,e =0.

is the sum of two MA processes, whose cumulants are
identically zero except on a finite support. This prop-
erty can then be used for detection and ARMA parame-
ter estimation (problem similar to (7)).
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Figure 2: ROC’s for an AR(4) process with poles p1, p2,
pP3 - .S']\rrR,;,;’e = 10.
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Figure 3: ROC'’s for an AR(4) process with poles p1, p2,
p3 - SNR; . = 20.
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Figure 4: ROC’s for the zero-mean multiplicative noise
detector for an AR(4) process with poles p1, p2, p3 -
N =1000 - SNR, . = 10.




