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ABSTRACT

In this work, nonlinear local transform domain �ltering

is reviewed, and its relation with wavelet denoising is

discussed. A postprocessing stage is applied to a number

of transform domain denoised signals to obtain a better

estimate of the original signal. Simulations are made

over di�erent Gaussian noise corrupted one-dimensional

signals and images, in DCT and wavelet transform do-

mains. Their performances with respect to threshold,

transform basis and window size are compared.

1 INTRODUCTION

Signal and image processing in transform domain rather

than in spatial domain suggests certain advantages

in terms of the convenience of incorporating a priory

knowledge on signals into the design of processing al-

gorithms and in terms of computational expenses. The

transfer from signal domain into the transform domain

is especially promising if it is applied locally rather than

globally. In [8], local adaptive �ltering in transform do-

main for image restoration is studied in detail. Local

adaptive �lters introduced in [8] work in the domain

of an orthogonal transform in a moving window and

nonlinearly modify the transform coe�cients to obtain

an estimate of the central pixel of the window. Re-

cently, nonlinear �ltering in wavelet transform domain

has been introduced in terms of wavelet denoising by

Donoho and Johnstone [4], and found e�cient applica-

tions in restoration of di�erent types of images ranging

from medical imaging to synthetic aperture radar. In

this work, we will review the design of optimal nonlin-

ear transform domain �lters and introduce a postpro-

cessing stage. We will compare performances of local

transform domain �lters and wavelet denoising on ad-

ditive Gaussian noise corrupted signals with respect to

di�erent parameters. We will introduce the observation

model and the �lter design problem in Section 2. In

Section 3, we will present simulation results and �nally

conclude the work in Section 4.

2 TRANSFORM DOMAIN FILTERS FOR

SIGNAL RESTORATION

Transform domain �ltering basically consists of follow-

ing three steps:

1. Computing spectral coe�cients f�r1;r2g = Tb of

the observed image fragment b within the window over

the chosen orthogonal transform T.

2. Multiplication of the obtained spectral coe�cients

by the �lter coe�cients f�r1;r2g,

b�r1;r2 = �r1;r2�r1;r2 . (1)

3. Inverse transformation T�1 of the output signal

spectral coe�cients fb�r1;r2g,
where subscripts (r1; r2;) are corresponding indices in

the transform domain.

With this approach, by minimizing the average square

error between the estimation and true value of the pixel,

the �lter parameters are found in [8] as

�r1;r2 =
AVimsysAVobj

�
�n1;n2 (�r1;r2 )

?
	

AVimsysAVobj fj�r1;r2 j
2g

; (2)

with ? denoting complex conjugate,AVimsys andAVobj

denoting averaging over realizations of imaging system

sensor noise and unknown parameters of the image, re-

spectively. The design of the local adaptive �lter is

therefore reduced to an estimation of local power spec-

trum of the input image fragment and its mutual local

spectrum with the 'ideal' image.

2.1 Local Adaptive Filters with Nonlinear Pro-

cessing in Transform Domain

Consider an observed signal modeled by the equation

b = La + n; (3)

where n is a random, zero mean signal independent

noise, and L is a linear operator of the imaging system.

Let the distorted signal be described in the orthogonal

transform domain by the relation

�r1;r2 = �r1;r2�r1;r2 + �r1;r2 ; (4)



where �r1;r2 are running representation coe�cients of

the linear operator L in the orthogonal transform do-

main, and �r1;r2 are zero mean spectral coe�cients of

the realization of the noise interference. Then, the op-

timum �lter coe�cients can be found from equation (2)

as,

�r1;r2 =
j �r1;r2 j

2j �r1;r2 j
2

�r1;r2AVimsysAVobj j �r1 ;r2 j
2
: (5)

The estimation of the \ideal" signal fragment spectrum

can be carried out by the following relationship,
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Using a zero order approximation for AVimsysAVobj,

the following �lter realization for signal denoising and

deblurring is found in [8],
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and the following �lter modi�cation, called "rejective"

�lter is proposed,

�r1;r2 =

�
1=�r1;r2 ; j�r1;r2 j

2 � thr and �r1;r2 6= 0

0; else
;

(8)

where the value of thr is associated with the variance of

additive noise. Note that the idea of shrinkage of trans-

form coe�cients that are lower than a certain threshold

recently reappeared and obtained popularity in the form

of wavelet shrinkage [3, 4]. The nonlinear operation in

transform domain de�ned by (8) refers to hard thresh-

olding used in wavelet denoising.

2.2 Wavelet Denoising

Wavelet transform decomposes a signal into successive

levels of resolution by use of two channel perfect re-

construction �lter banks. Wavelet transform compacts

most of the real signals energy in a few low resolution co-

e�cients with high magnitude, where wavelet transform

of noise spreads over all coe�cients with a low magni-

tude. Wavelet denoising (WD) exploits this energy com-

paction property of the wavelet transform, and works in

three steps of transform domain �ltering presented in

Section 2.1. In that case, the orthogonal transform T

is chosen as the wavelet transform which operates on

the whole data by use of �lter banks, rather than op-

erating on a sliding window, and �lter coe�cients are

as given in Eq.8 or Eq.7 with �r1;r2 = 1. Although

wavelet denoising does not operate on a sliding win-

dow, but on the overall image, localization property of

wavelet transform makes it possible to consider local

behaviour of the data. Nonlinear wavelet methods for

recovery of signals is studied in detail by Donoho [2].

However, wavelet denoising introduces artifacts (under-

shoots and overshoots) to the denoised signal. Those

artifacts are studied and translation invariant denois-

ing to obtain better performance have been proposed

in [2]. Translation invariant (TI-WD) denoising per-

forms signal recovery in the following steps: 1. Perform

wavelet denoising both on the noisy signal and circu-

larly shifted versions of the noisy signal; 2. unshift the

denoised shifted signals and 3. average over the results

obtained. Since a discrete wavelet transform is shift

variant, the artifacts in �ltered output of shifted signal

do not appear at the same locations as the �ltered out-

put of nonshifted signal. Hence, averaging over shifts

result in elimination of artifacts that appear in wavelet

denoising.

2.3 A Postprocessing Stage to Local Transform

Domain Denoising

In subsection 2.1, a sliding window over the signal is

used to estimate the central pixel value. Although this

local transform approach with a sliding window is ex-

pected to adapt the local characteristics of the signal

better than global transform domain approach, it may

still result in similar artifacts encountered in wavelet

denoising. To obtain a similar e�ect as translation in-

variant denoising does, it is possible to keep the denois-

ing results for every pixel in a window and estimate

a pixel's value by averaging the corresponding pixel's

outputs from denoising of several windowed fragments.

Let Wk;l be the N � N window enclosing the pixels

(k; l); : : : ; (k+N � 1; l+N � 1). The denoised value of

pixel (r1; r2) 2Wk;l by applying a denoising operator to

the fragment of signal enclosed byWk;l can be expressed

as

â(k;l)
r1;r2

=
�
T�1(f�i;j:�i;jg)

�
; (i; j) 2Wk;l: (9)

An estimation of pixel (r1; r2) can be obtained by

âi;j =
1

N2

r1X
k=r1�N+1

r2X
l=r2�N+1

â(k;l)
r1;r2

; (10)

k = r1 �N + 1; : : : ; r1; l = r2 �N + 1; : : : ; r2:

We call the overall transform domain nonlinear �lter-

ing with the postprocessing stage introduced by equa-

tions (9-10) as transform domain averaged local �lter

(ALCF).

3 COMPARATIVE RESULTS

The reviewed transform domain �lters and introduced

transform domain averaged local �lter are tested on two

one dimensional signals, an ECG signal and a piecewise

constant signal of length 1024 with range f�1; 1g, and
on 256 � 256 images, two aerospace images aero1 and

aero2, the Lenna image, an MRI image and a piecewise

constant image. Gaussian noise with standard deviation

� = 0:1 is added to one dimensional signals resulting in

MAEecg = 0:0818, MAEpiecewise = 0:0802. Noisy im-

ages are obtained by adding Gaussian noise of standard

deviation � = 15.



DCT, Daubechies 4 (Db4) wavelet basis, and Haar ba-

sis with di�erent window sizes are used to obtain trans-

form domain signals. Both wavelet transform and DCT

are appropriate in terms of obtaining accurate spec-

trum estimation from the observed data and in terms

of computational complexity. DCT in a running win-

dow can be computed recursively, [5]. Hard threshold-

ing (Eq.8) is tested with several threshold values. In

Figure 3 (Left), RMSE variation of the compared meth-

ods with respect to threshold are presented for denoised

ECG signal. It shows that averaging over several de-

noising results provides better robustness to threshold.

In Figure 3 (Right), PSNR variation of averaged local

�lter with DCT basis with respect to window size and

threshold is presented for Lenna image. The transform

window length which gives the optimum result depends

on the characteristics of the signal.

Quantitative results are tabulated in Table 1, where

RMSE =
p
MSE, and PSNR = 10 log10(255

2=MSE).

They show that local transform domain �ltering with

sliding window performs better than wavelet denoising.

Although quantitative results for translation invariant

denoising and averaged local transform domain denois-

ing are comparable, visual results (see Figures 1, 2) show

that averaged local transform domain denoising gives

better visual quality. Transform basis which results in

the best performance depend on the signal structure,

i.e., Haar basis performs better than Daubechies for

piecewise constant signals.

4 CONCLUSIONS

We reviewed nonlinear �lter implementations in or-

thogonal transform domain and compared their per-

formance with respect to several parameters like win-

dow size, transform basis, and threshold. We compared

performance of wavelet denoising, translation invariant

wavelet denoising and transform domain �ltering within

a sliding window over a signal. We found out that av-

eraging the denoising results of local transform domain

denoising within a range of windowed signals (instead

of using one window to estimate its central pixel) in-

creases both the visual and quantitative performance.

Future extension of this work may include using di�er-

ent estimators than a simple averaging over the range

of denoising outputs of windowed signals. It is also con-

cluded that window size which results in the best out-

put in local �ltering depends on the image structures.

Hence, using a varying sized window may be included

in the future work as well.
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Table 1: Quantitative results for one dimensional signals and images

Signals Images

Transforms ECG piecewise Lenna piecewise aero1 aero2 MRI

RMSE MAE RMSE MAE PSNR PSNR PSNR PSNR PSNR

WD-haar 0.0602 0.0423 0.0419 0.0238 26.72 30.03 26.91 32.28 30.87

WD-Db4 0.0519 0.0381 0.0520 0.0352 27.16 27.78 27.57 33.28 31.50

TI-WD-haar 0.0382 0.0270 0.0218 0.0139 29.77 32.49 30.04 34.90 33.75

TI-WD-Db4 0.0354 0.0260 0.0354 0.0235 30.09 30.80 30.37 35.17 34.16

LChaar 0.0521 0.0332 0.0366 0.0220 27.36 29.50 28.14 34.16 31.82

LCdct 0.0404 0.0281 0.0555 0.0385 27.96 27.80 28.99 34.60 32.69

ALCHaar 0.0426 0.0312 0.0218 0.0142 29.64 33.49 29.78 35.11 33.54

ALCDb4 0.0352 0.0246 0.0389 0.0281 29.95 31.82 30.23 35.31 33.80

ALCdct 0.0339 0.0243 0.0439 0.0303 30.49 31.03 30.82 35.70 34.65

Figure 2: Left : ECG plots from up-to-down left-to-right; a.original, b.noisy, �ltered with c.LChaar, d.LCdct, e.WD-

Db4, f.TI-WD-Db4, g.ALCdct, h.ALCDb4. Right : Enlarged window from Left a,f,g.

Figure 3: Left : Performance variation of di�erent methods with respect to threshold. Right : Performance variation

of ALCdct �lter with respect to threshold and window sizes w �w.


