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ABSTRACT

In GPS applications, positioning techniques are based
on the characteristics of the pseudo-random code au-
tocorrelation function. They don't take into account
the eventuality of multipath propagation. One re
ected
signal may greatly disturb the measures of the usual
Early-Late method. A maximum a posteriori (MAP)
estimator is proposed in this study, introducing a multi-
path model and prior laws on both amplitude and delay
parameters. This method deals with deconvolution of
known functions with simple forms. Performance de-
pends on data observation length but they greatly im-
prove results.

1 Delay estimation

The GPS application consists in estimating the prop-
agation duration of a coded signal between an emitter
satellite and the receiver. This delay measure allows to
calculate the distance from the user to the satellite, and
with at least four estimates from four di�erent emitters,
the positioning can be realized [1].

1.1 No-multipath model

If we neglect Doppler e�ects, the model of the received
signal, after demodulation, is for each satellite :

s(t) = ac(t� �) + w(t) (1)

where:
a: signal amplitude;
c: Gold code (di�erent for each satellite).
�: signal time delay;
w(t): white gaussian noise.

In this case, the maximum likehood (ML) estimator
of � and the argument maximizing the intercorrelation
function of the code c(t) match each other. GPS re-
ceivers use this equality to estimate the delay by a \ge-
ometric" method called Early-Late (EL) [1].

1.2 Early-Late method

The autocorrelation function 
(t) of each Gold code ci(t)
has the characteristic form described on the �gure 1.

The sample frequency Fe (2MHz) and the chip (symbol)
duration T (977.5ns) ensure the position of three values
of the sampled intercorrelation between s(t) and c(t),
on the triangular part of 
(t� �). The delay estimate is
then:

b� = kP :Te � �:REL:Te (2)

where:
kP : the argument maximizing the sampled in-

tercorrelation function and so, a �rst approximation of
the delay � ;

�: a constant depending on the number of
chips and samples;

REL = 
[kP�1]�
[kP+1]

[kP�1]+
[kP+1]

.
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Figure 1: Autocorrelation 
(t)

2 Specular re
ection

Obviously, the (EL) method is based on the validity
of the model (1). Unfortunately, a problem frequently
encountered in some applications like 
ying above the
sea [2], is multipath propagation that can be represented
by a two rays model.

2.1 2-paths model

We will consider in this paragraph the e�ects of one
specular re
ected traject. Then, the received signal s(t)
may be expressed as:



s(t) = a1c(t� �1) + a2c(t� �2) + w(t) (3)

where:
a1: direct signal amplitude;
a2: re
ected signal amplitude;
�1: direct signal time delay;
�2: re
ected signal time delay;
w(t): white gaussian noise.

Moreover, the physical phenomenon of specular re-

ection guarantees the following inequations:

-attenuation: a2 < a1 (4)
-time delay: �2 > �1 (5)

2.2 E�ects of multipath

The characteristics of the function 
(t) allow a correct
estimation only for delay di�erences (�2��1) larger than
1.5 chips (�g 2). Below this value, the contribution of
the re
ected signal disturbs consequently the intercor-
relation around the direct delay time �1 (�g 3) [3].
As a result, the (EL) method can't solve the position-

ing when the re
ected signal is too close from the direct
signal (�g 2).
It appears necessary to elaborate a new method that

considers the presence of re
ected signals in the model.
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Figure 2: (EL) error vs (�2 � �1)�[0; 2:5chips]
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Figure 3: Intercorrelation in presence of a re
ected sig-
nal: �(t) = a1
(t� �1) + a2
(t� �2)

3 MAP method for delay estimation

In presence of multipath propagation, the intercorrela-
tion function may be viewed as the superposition of a
�nite number of elementary triangles (�g 1) with un-
known parameters (ai; �i).

We propose is to solve the estimation problem by a
bayesian MAP approach [4] using some prior laws on the
parameters thanks to (3) and (4). Even if �1 is the only
parameter useful for GPS receiver, all are estimated.
Indeed, a MAP method could be developed on the

signals directly. The bene�ts to still consider the auto-
correlation function are to increase the signal to noise
ratio and to have simple forms (triangular) to decon-
volve.

3.1 Multipath model

In order to consider a more general model, we introduce
a multipath model that can represent either K specular
re
ections or a continuous distribution of re
ected en-
ergy (K ! 1), see [2] [5] and �g 5. In the sequel, we
will discuss the robustness of the proposed algorithm to
the multipath model.
The model can be expressed as:

s(t) =

i=KX
i=1

aic(t� �i) + w(t) (6)

where:
a1: direct signal amplitude;
�1: direct signal time delay;
ai: i

th re
ected signal amplitude;
�i: i

th re
ected signal time delay;
w(t): white gaussian noise.

And the intercorrelation �(t):

�(t) =

i=KX
i=1

ai
(t� �i) + b(t) (7)

where b(t) represents the modelling error on the in-
tercorrelation function.

3.2 Method

With this model and with vectors � = [�n] of �(t) sam-
ples, �=[�i] and A = [ai]: we propose to estimate jointly
all parameters by:

(�̂; Â; K̂) = argmax [p(�; A;Kj�)]
(�; A;K)

(8)

With the hypothesis that amplitude and delay param-
eters are independant, this a posteriori probability can
be also written thanks the Baye's law:

p(�; A;Kj�) =
p(�j�; A;K)p(�jK)p(AjK)p(K)

p(�)
(9)

And if we don't a�ect prior information to K, choos-
ing an uniform law on the range [1;Kmax], the equation
(8) is equivalent to:

(�̂; Â; K̂) = argmin [QK(�; A) +H1;K(A) +H2;K(�)]

(�; A;K)

(10)



where:

8<
:

QK(�; A) = �ln[p(�j�; A;K)]
H1;K(A) = �ln[p(AjK)]
H2;K(�) = �ln[p(�jK)]

(11)

and because of lack of knowledge on b(t), we consider
the Least Square error (known to be optimal in the white
gaussian case):

QK(�; A) =
1

2�2

X
n

������n �
i=KX
i=1

ai
(nTe � �i)

�����
2

(12)

Introducing the cost function Jk(�; A) (13) and sepa-
rating the estimation of discret value parameter K and
value parameters (�, A), the estimation is realized in
(Kmax+1) steps (14):

Jk(�; A) = QK=k(�; A) +H1;K=k(A) +H2;K=k(�)
(13)

8>>>><
>>>>:

a) for k 2 [1,Kmax]:

(�̂k; Âk) = argmin [Jk(�; A)]
(�; A)

b) K̂ = argmin [Jk(�̂k; Âk)]
k

(14)
Finally, the solution to (8) is the triplet (�̂

K̂
,Â

K̂
,K̂).

3.3 Prior laws

The parameters (ai) are supposed to be respectively mu-
tually independent and to follow a Gamma law:

p(AjK) =

KY
i=1

p(ai) (15)

p(ai) =
1

�(�)
a��1i exp�ai (16)

The same hypotheses are chosen for parameters (�i-
�i�1) for (i > 2). For �1, which is the time delay of direct
signal, we choose an uniform density of probability.

p(�jK) = p(�1)

KY
i=2

p(�i � �i�1) /

KY
i=2

p(�i � �i�1) (17)

p(�i � �i�1) =
1

�(�)
(
�i � �i�1

T
)��1exp�(

�i��i�1

T
) (18)

Since we don't mind re
ected signals whose delays are
more than 1.5 chips later than the direct signal, � has
been chosen to favor small di�erences between the �i
(�gure 4.b). On the contrary, � authorize more varia-
tions around the value 1 (�gure 4.a).

As a result, the expressions of the functions H1;k(�)
and H2;k(A) are:

H1;k(A) = (1� �)

kX
i=1

ln[ai] +

kX
i=1

ai + k ln[�(�)] (19)

8>>>><
>>>>:

if (k � 2): H2;k(�) = (1� �)
Pk

i=2 ln[
(�i��i�1)

T
]

+
Pk

i=2
(�i��i�1)

T
+ k ln[�(�)]

if (k = 1): H2;1(�) = ln[�(�)]

(20)
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Figure 4: prior laws

4 Performances

4.1 Simulation settings

The signal s(t) was generated as shown on equation (6)
with parameters �i and ai determined respectively by an
uniform and an exponential laws such that the power
distribution versus delay time match di�erent experi-
mental results [5] [2] which have been realized.

specular reflected signals

θ θ θ θ1 2 3 i

power density

direct signal

Figure 5: example of delays and amplitudes distribution

All delays are on a range of 1.5 chips (2.2). The en-
tire power of re
ected signals is between [�4dB;�6dB]
lower the direct signal power.
Finally, parameters (�i,ai=1) are taken constant dur-

ing all the observation (np periods of code) whereas
(ai>1) only during 1ms (code period).



Whatever the observation duration (np ms) of signal
s(t) (Fe = 2MHz) is used, only the N (N = 2000)
�rst samples of intercorrelation y(t) are estimated by
the algorithm. But the interest to consider a larger ob-
servation is to increase the signal to noise ratio (SNR).

4.2 2-paths model

The MAP method has been tested in presence of one
specular re
ection.

Figures 6.a) and 6.b) show the improvement us-
ing the maximum a posteriori method (MAP) com-
pared to Early-Late Method (EL) in presence of only
one re
ected signal.Both methods are compared to the
Cramer-Rao bound (CR) (6.b) despite the EL and MAP
estimators are biased. Moreover, this CR bound has
been calculated with known amplitudes.

The MAP algorithm turns out to be more e�cient
than the EL estimation not only in terms of variance
but also for the bias which decreases by a factor 4.

Finally, the algorithm always detects, even for low
SNR, the right number of re
ected signals.
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Figure 6: Bias and variance of EL and MAP (specular
re
ection, np = 10)
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Figure 7: MAP bias and variance for di�erent estima-
tion duration (np ms)

It can be noticed the surprising e�ect of bias increases
with np (�g 7.a) whereas as expected the variance de-
creases(�g 7.b). But the maximum value of bias (0.04
chips) is still very low compared to �gure 2.

Nevertheless, these �gures show that it isn't worth
increasing too much the observation duration (np ms) :
performances are quite identical for 10 and 20 ms.

4.3 Multipath model

Figures 8.a and 8.b were generated with delays and am-
plitudes distribution of �gure 5 with K = 15 but the
algorithm minimum was found for k = 2 (direct path +
one specular re
ection). In this case, the results of the

estimator �̂1 prove that the MAP estimator is equivalent
to EL method in terms of variance (which isn't so high).
But, in terms of bias, MAP algorithm give a result �ve
times better rather than the EL estimator.
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Figure 8: Approximation of multipath by a 2-paths
model

5 Conclusion

We have shown that the MAP method can realize better
positioning with respect to the EL algorithm in presence
of specular re
ection. Such improvements could have
been done thanks to a priori laws given to delays and
amplitudes of re
ected signals whose characterization is
nowadays the subject of numbered studies.
Moreover, it would be di�cult to detect all re
ected

signals in the case of multipath propagation and to es-
timate all parameters. As we demonstrated, the algo-
rithm is still robust to the presence of modelling error.
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