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ABSTRACT

This paper outlines the use of an Evolutionary Algo-
rithm (EA) to perform the Equalisation of a non min-
imum phase channel. Conventional techniques utilising
�rst and second order approximations of the error sur-
face, have been demonstrated to be ine�ective in achiev-
ing an optimal solution in continuous simulations, and
have proved incapable of dealing with the more di�cult
non minumum phase problems. Using an EA, this paper
will show how a consistent, near optimal, solution can
be achieved.

1 INTRODUCTION

EAs o�er a global optimisation technique that is ideal
for the multimodal, nonlinear optimisation of Multi-
Layer Perceptron (MLP) Neural Networks to solve the
channel equalisation problem. In recent years there has
been considerable research into the problem of channel
equalisation, and in particular the application of non
linear solutions to this problem [1,2,3].
However, this research has been considerably ham-

pered by the lack of adaquate algorithms to optimise
these non linear structures. Current procedures utilise
a gradient descent approach (Back Propagation) to the
optimisation problem, using �rst or higher order approx-
imations of the error surface to aid in the estimation of
a better, more optimal solution [3]. Unfortunately, to
implement these techniques there needs to be some a
priori assumptions as to the nature of the error surface.
These assumptions can be summarised as:

� a di�erentiable error surface.

� a monomodal surface with a zero terminating gra-
dient.

For an MLP structure, these assumptions are invalid.
The error surface can be easily shown to be multimodal
[7], with very 
at plateaux and steep cli� edges (Figure
1). It is primarily because of this topology that gradi-
ent descent has di�culty in the optimisation of MLP's;
the slow learning in the plateau areas are followed by
steep slopes that drive gradient descent into instability.

Another global optimisation technique is required, one
that is better suited to the di�culties in the optimisa-
tion surface.

An (EA) o�ers a global search technique that has had
some success with di�cult optimisation problems. EA's
utilise Darwinian survival of the �ttest ideology to �nd
an optimal solution. They use a population of individu-
als, called a chromosome, and by a process of selection
and breeding of each individual, called genes, a best gene
will emerge. Individuals are selected by merit or �tness,
with the more meritorious individuals having a greater
chance of propagation to latter generations. To success-
fully immitate a system of organisms, there is also a
mutation operation occuring on selected genes within
the chromosome.

To summarise, this paper will describe how an EA
works, as well as highlight modi�cations to MLP struc-
tures that have produced improved results when com-
pared to the standard MLP implementation. A com-
parison of the EA with a standard Back Propagation
(BP) algorithm will show how the EA outperforms BP
by using a Bit Error Rate (BER) performance compari-
son over an ensemble of simulations using the two tech-
niques.

2 DESCRIPTION OF EA

An EA is a stochastic search technique untilising Dar-
winian criteria to improve the �tness of a population of
genes [4,5]. To �nd an optimal con�guration, the EA
relies on three basic operations: survival, crossover and
mutation.

However, before the optimisation can proceed it is
necessary to encode the MLP into a format suitable for
optimisation. This is achieved by initialising the popu-
lation with a structure that is suitable for the optimisa-
tion [5,6]. Previous work has shown that it is possible
to initialise a network to �t a certain topology, that is
speci�c to the problem, without signi�cantly decreasing
the generality of the MLP in the optimisation. Once
this is done the optimisation can proceed to �nd the
best con�guration [6].



−100

−50

0

50

100

−100

−50

0

50

100
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

network parameter 1

2D NETWORK FITNESS SURFACE

network parameter 2

S
o

lu
ti
o

n
 P

o
in

t 
F

it
n

e
s
s

Figure 1: Error Surface of an MLP, highlighting the di�-

culty in optimisation by conventional gradient descent tech-

niques

2.1 Encoding of the EA

A speci�c encoding is used to ensure the EA can ef-
�ciently optimise the MLP. If we assume a network
made up of hardlimiting devices, we can successfully
dychotomise the MLP into two distinct processing fea-
tures. If the input layer is considered, the network in-
put will be a time delayed sampled channel consisting
of channel output and noise; this is, in e�ect, a sam-
pled analogue channel. Now, since the processing nodes
utilise the hard limiting activation function, the ouput
of the �rst layer will be a binary vector. Therefore,
the function of the MLP can be described thus: the
�rst layer is primarily an analogue to digital converter,
whilst the latter layers perform a Boolean classi�cation
of this data.
To summarise, by assuming whether the channel is

minimum phase or not, the outer layers can be used to
perform a static logic mapping, whilst the input layer
perceptrons try to achieve the best partition of the input
space [6].

2.2 Initialisation

To initialise the EA, each member of the population (i.e.
each MLP) is instantiated with a speci�c topology that
is similar to the optimum shape. It has been shown that
using a speci�c topology, an increased performance from
the EA can be achieved without reducing the learnibility
of the MLP. The BP optimisation was initialised using
the same strategy to ensure a fair comparison.
These MLP con�gurations are created by initialising

the gradients, and biases, of the the perceptrons to a
parameter range that has a topology similar to the so-
lution. The EA will then optimise the decision bound-
aries to achieve the best con�guration. The biases of the
MLP were intialised to random values between �2 with
the weights initialised to values between �5. To create
a chromosome, the weights and biases of the MLP are
represented as an N dimensional vector, i.e. each weight
or bias represents a dimension.

2.3 Survival

To achieve an optimal con�guration of weights, it is nec-
essary to remove the poorer performing individuals. To
do so, it is imperative to guage the e�ectiveness of in-
dividuals within a population. This can be achieved by
showing each member a training data set, and using this
to calculate the errors associated with each individual.
They can then be ranked according to �tness [4].
A random selection criteria, weighted by the �tness of

each individual, is used to select which networks will be
allowed to continue to the next generation. This process
results in the �ttest individual having a greater chance
to crossover their individual genetic information.

2.4 Crossover

Once the better genes have been selected, a method of
transferral of information needs to be implemented; to
do so requires pairs of parents within the population to
swap their genetic information. A single point crossover
strategy was implemented within the EA, whereby a
point of crossover was randomly selected between the
two parent genes, resulting in two o�spring genes re-
placing both parents [5,6].
There is a further operation that actually swaps the

information of the the two subgenes of the parents, with
this ensuring a greater search potential of the population
[5,6].

2.5 Mutation

Mutation is the �nal parameter that adds a degree of
randomness to the search technique. Without muta-
tion, the search would be constrained to be within the
boundaries of the parameters set at initialisation. Mu-
tation can therefore be viewed as adding small pertur-
bations to the system, and therefore ensuring a greater
amount of the error space is explored by the EA.
The mutation rate was set to 10% for each individual,

the mutation rate for each weight was set to 35%, which
ensures that when a mutation takes place the individual
is mutated to a signi�cant extent. These values have
been chosen quite arbitrarily, and there is scope for fu-
ture investigation to determine how e�ective the current
con�guration is.

3 SIMULATION PROCEDURE

To investigate the feasibility of the EA, two di�erent non
minimum phase channels have been chosen. For the �rst



simulations the channel model was Equation 1, whilst
for the second set Equation 2 was used. In the �rst
set of simulations a channel was equalised by an MLP
trained by BP and an EA in order to compare the per-
formance of the di�erent algorithms. Ten simulations
were performed for each SNR. The resultant networks
were then subjected to a bit error rate test to determine
how e�ective each of the training techniques were.
The second set of simulations used a slightly di�er-

ent network con�guration. The input and hidden layers
were made up with hard limiting perceptrons, whilst the
output layer was made up of a softer hyperbolic tangent
activation function. The aim of this con�guration was
to slow down the convergence to enable the MLP to
converge to a more optimal value. Ten simulations were
run with a varying gradient parameter of 0.1, 0.5 and
1.0; these were compared with the optimal achieveable
performance [1].
The aim of the simulations was to show that a soften-

ing of the output layer would improve the overall BER
performance, by reducing the likelihood of a subopti-
mal con�guration. The BER performance for each of
these simulations was ensemble averaged to achieve an
expected BER performance for an MLP of a speci�c
con�guration. Below are the z transfroms of the two
channels.

H(z) = 0:2362+ 0:8636z�1+ 0:2362z�2 (1)

H(z) = 0:3482+ 0:8704z�1+ 0:3482z�2 (2)

4 RESULTS

The results indicate that the EA provides a more e�ec-
tive means of training an MLP to perform the equalisa-
tion of a non minimum phase channel. Figure 2 shows
that the EA would train the MLP to a more optimal so-
lution more often than BP. The plot also shows that the
performance is slightly less than optimal. On average
the variance of the BER performance of MLPs trained
with an EA was much less than those trained with BP.
Another interesting point was that, whilst the EA and

BP could train a MLP to an optimal con�guration, the
complex nature of the error surface posed little di�culty
for the EA, whilst BP would su�er stability problems
and not converge to a satisfactory solution. There was
also a di�culty in determining a satifactory termination
criteria for BP, whilst the EA would converge satisfac-
torily within 15 generations (the limit used to calculate
the optimal network using an EA).
Figure 3 shows the e�ect of using a dual structure

network, i.e. a network with hardlimiting activation
functions in the input and hidden layers and a hyper-
bolic tangent function in the output layer. The reasons
for this con�guration is to enhance the noise character-
istics of the EA. If a network is made up of hardlimiting
perceptrons, it tends to be impervious to the noise of
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Figure 2: showing the performance of the EA compared to

Back Propagation

the training sequence, and therefore can cause the MLP
network to converge prematurely to a suboptimal con-
�guration. This can be alleviated by softening the ouput
perceptron, to ensure there is always an error with the
output to add a degree of uncertainty.

5 DISCUSSION

These results when coupled with previous research show
that EAs o�er an e�ective alternative training tech-
nique for MLP's to perform channel equalisation. EA's
have been useful in training MLPs of di�erent struc-
ture and do in fact outperform conventional gradient
descent techniques. This has been veri�ed in two sep-
arate cases, the equalisation of di�cult non minimum
phase channels using MLP structures that were thought
of as being incapable of learning a speci�c boundary
to the degree that was thought necessary [3], and the
BER analysis with time delayed channels to compare
with conventional gradient descent techniques. In all of
these analyses the EA outperformed gradient descent,
primarily because of the inability of gradent descent to
deal with the di�cult error surface shown in Figure 1.
EAs do have a number of 
aws that results in a con-


ict of interest to the user, these are:

� A fast convergence that can result in the premature
convergence to a suboptimal solution.

� By slowing down the convergence a better more op-
timal solution can be obtained.

The convergence of the EA can be hastend up in two
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Figure 3: showing the performance of the EA compared to

Back Propagation

ways: by increasing the selectivity of the �tness func-
tion, and by making the output layer a hardlimiter ac-
tivation function for the training cycle. The �rst opera-
tion speeds up convergence by ensuring that the current
�tter individuals have a greater chance of propagating
their genetic information into subsequent generations,
whilst the second operation tends to ignore the pres-
ence of noise in the optimisation and in doing so cause
the premature convergence of the EA.
The softening of the output (i.e. by making it a hyper-

bolic tangent) function is bene�cial primarily because
it incorporates noise information into the optimisation
process whilst maximising the learnability of the cur-
rent structure through the use of hardlimiting activation
functions in the hidden layers [8,9]. After the training
cycle the softlimiting activation function is replaced by
the conventional hardlimiter; this ensures that the ouput
will be either �1.

6 CONCLUSIONS

Evolutionary Algorithms o�er a global search technique
that is highly e�ective in training nonlinear structures
(MLPs) to perform the equalisation of di�cult nonmini-
mum phase channels. It has been shown to outperform a
standard gradient descent technique (BP) over a range
of simulations on two separate channels. However, a
question remains unanswered; why does an EA outper-
form BP? The simple answer is due to the multimodal
nature of the optimisation surface, which means that
BP (an essentially monomodal optimisation strategy)
has di�culty in locating an optimal point. Due to the

global nature of the EA search, a better view of the op-
timisation surface can be created, with this aiding the
optimisation. Another di�culy with the error surface is
its range of gradients, this has been shown by Figure 1.
Previous research has also shown that there has been

considerable di�culty in the estimation of poles close
to the unit circle by gradient optimisation techniques
[10]. There is therefore a relationship between the error
surface and the di�culty in the equalisation problem,
this further discounts the e�ectiveness of conventional
gradient descent based optimisation operations.

7 FUTURE WORK

Future work will involve the development of hybrid tech-
niques, coupled with more precise cross over and muta-
tion operations. The dimension of the input also needs
to be increased to enhance the noise performance of the
system to more acceptable levels; a more generalised ini-
tialisation procedure needs to be implemented for this
purpose. Finally, the EA needs to be modi�ed for the
optimisation of a non static MLP structure, this will
more e�ciently utilise the EA's processing power.
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