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ABSTRACT

We investigate blind and semi-blind maximum likelihood
techniques for multiuser multichannel identification. Two
blind Deterministic ML methods based on cyclic prediction
filters are presented [1]. The Iterative Quadratic ML (IQML)
algorithm is used in [1] to solve it: this strategy does not
perform well at low SNR and gives biased estimates due to
the presence of noise. We propose a modification of IQML
that we call DIQML to “denoise” it and explore a second
strategy called Pseudo-Quadratic ML (PQML). As proposed
in [2], PQML works well only at very high SNR. The solu-
tion we present here makes it work well at rather low SNR
conditions and outperform DIQML. Like DIQML, PQML is
proved to be consistent, asymptotically insensitive to the ini-
tialisation and globally convergent. Furthermore, it has the
same performance as DML. A semi-blind extension com-
bining these algorithms with training sequence based ap-
proaches is also studied. Simulations will illustrate the per-
formance of the different algorithms which are found to be
close to the Cramer-Rao bounds.

1 Data Model and notations

We consider a spatial division multipleaccess (S.D.M.A.)
communication system withp emitters and a receiver consti-
tuted of an array ofm1 antennas. The signals received are
oversampled by a factorm2 w.r.t. the symbol rate, hence we
havem = m1:m2 multiple channels. We assume the chan-
nels to be FIR, i.e. we assume the (vector) impulse response
from sourcej to be of lengthNj . Without loss of generality,
we assume the first non-zero vector impulse response sam-
ple to occur at discrete-time zero. LetN =

Pp

j=1Nj and,
w.l.o.g.,N1 � N2 � � � � � Np. The discrete-time received
signal can be represented as in vector form as

y(k) =

pX
j=1

HjANj j(k) + v(k) =HAN (k) + v(k) (1)
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y(k) =
�
yH1 (k) � � � yHm(k)

�H
; v(k) =

�
vH1 (k) � � � vHm(k)

�H
;

hj(k) =
�
hH1j(k) � � �h

H

mj(k)
�
H

;Hj = [hj(0) � � �hj(Nj�1)] ;

H = [H1 � � �Hp] ; a(k) =
�
aH1 (k) � � � aHp (k)

�H
;

Anj(k) =
�
aHj (k) � � �aHj (k�n+1)

�
H

;

AN (k) =
�
AHN11

(k) � � �AHNpp(k)
�
H

:

(2)
where superscriptH denotes Hermitian transpose. We con-
sider additive temporally and spatially white Gaussian cir-
cular noisev(k) with Rvv(k � i) = E

�
v(k)vH (i)

	
=

�2vIm�ki. Assume we receiveM samples:

YM (k) = TM (H) AN+p(M�1)(k) + VM(k) (3)

where YM(k) =
h
Y H (k) � � �Y H(k �M + 1)

iH
and

VM (k) is defined similarly whereasTM (H) is the multi-
channel multiuser convolution matrix ofH, with M block
lines (TM(H) = [TM(H1) : : :TM(Hp)], whereTM (Hj)

is block Toeplitz). We shall simplify the notation in (3) with
k = 0, and introduce the noise-free received signal asX :

Y = T (H)A + V X = T (H)A (4)

We assume thatmM > M+N�1 in which caseT (H)

has more rows than columns. For obvious reasons, the col-
umn space ofT (H) is called the signal subspace and its or-
thogonal complement the noise subspace.

2 Prediction-based blind Deterministic ML

2.1 Linear Prediction and Noise Subspace
Consider the problem of predictingy(k) from Y L(k � 1),
where the received signal is considered noiseless. The pre-
diction error can be written as

ey(k)jY L(k�1)
= y(k)� by(k)jY L(k�1)

= PLY L+1(k)

(5)
with PL = [P L;L � � �P L;1 P L;0] ; P L;0 = Im. Min-
imising the prediction error variance leads to the following
optimisation problem

min
PL

P LRYY P
H
L = �2~y;L (6)

hence
PLRYY =

�
0 � � �0 �2~y;L

�
: (7)



All this holds forL � L =
l
Nt�p
m�p

m
. As a function ofL, the

rank profile of�2~y;L behaves like

rank
�
�2~y;L

�8<:
= p ; L � L

= m�m 2 fp+1; ::;mg ; L = L�1
= m ;L < L�1

(8)

wherem = L(m � p) � N + p 2 f0; 1; : : : ;m�1� pg
represents the degree of singularity ofRYY;L. ForL � L,ey(k + L)jY L(k)

=H(0)a(k+L). If we now consider pre-
diction on the scalar quantitiesyi(k), from the former equa-
tion, we deduce that~yi(k + L) = 0; i = p + 1; : : : ;m and
them� p corresponding lines ofP L are singular prediction
filters (i.e. such thatPL;iT (H) = 0). If we collect these
m � p singular filters and remove all dependencies between
elements, we getP of the form

Lm mz }| { z}|{
�::� �::� �::� 10 0 0 0 0::0

�::� �::� �::� 01 0 0 0 0::0

�
m

�::� �::� �::� 00 � 1 0 0::0

�::� �::� �::� 00 � � 1 0::0

�
m�p
�m|{z}

m

(9)

where there areNm � p2 free parameters andm � p 1’s.
One can show thatP spans the whole noise subspace, thus
H can be retrieved, apart from a triangular dynamic factor
(see [3]), by finding the solution ofPT (H) = 0 in a least
squares sense, which is equivalent to a Noise Subspace Fit-
ting problem.

2.2 Deterministic ML
The Deterministic Maximum Likelihood (DML) method was
introduced for blind channel estimation in [4, 5], and an ex-
tension to the multi-user case in [1]. In DML, both channel
coefficients and input symbols are considered as determinis-
tic quantities and are jointly estimated through the criterion:

max
A;h

f(Y jh) , min
A;h

kY � T (H)Ak2 (10)

wheref(Y jh) is the probability density function. Optimis-
ing (10) w.r.t.A and replacing in (10), we get:

min
h
Y HP?

T (H)
Y (11)

P?
T (H)

is the orthogonal projection on the noise subspace.

Using the linear minimal parameterisation of the Noise
Subspace described here above, sinceP?

T (H)
= P

T H (P )
,

(11) can be written as:

min
P

Y HT H (P )R�1T (P )Y (12)

whereR = T (P )T H(P ). A matrix Y filled out with the
elements of the observation vectorY can be found such that
T (P )Y = Yp, wherep is a vector grouping the elements
of P . Then (12) becomes (with the ’ones’ and ’zeros’ ofP
remaining fixed):

min
p
pHYHR�1Yp (13)

One could also, as suggested in [1] introduce a vectorGN

containing the free parameters ofP andg = [1 GT
N ], which

would lead to
min
kgk=1

g
HYH

g R
�1Ygg (14)

whereT (P )Y = Ygg. The constraintg(0) = 1, is equiv-
alent tokgk = 1 in the minimisation of (14), hencêg is the
minimal eigenvector ofYH

g R
�1Yg.

2.3 Iterative Quadratic DML
The Iterative Quadratic ML algorithm (IQML) is used to
solve (14) in [1]: the denominatorR, computed thanks to the
previous iteration, is considered as constant and hence crite-
rion (14) becomes quadratic. It is proved to be consistent at
high SNR and requires a very good initialisation. But at low
SNR conditions, it is biased because the true channel is not a
stationary point of the algorithm and performs poorly.

2.4 Denoised Iterative Quadratic ML (DIQML)
We propose here a method to “denoise” the DML criterion:
this denoised criterion called DIQML solved in the IQML
way will be consistent.

Asymptotically in the number of dataM , by the law
of large numbers, (13) is equivalent to its expected value
which is tracefP

T H(P )
E(Y Y H)g. The denoising strat-

egy consists in removing the asymptotic noise term present
inE(Y Y H), i.e.�2vI; the denoised DML criterion becomes:

min
kpk=1

tracefP
T H(P )

�
Y Y

H � �2vI
�
g (15)

Note that this operation does not change the DML criterion
solution as�2v tracefPT H(h?)g is constant. (15) is solved in
the IQML way by consideringR as constant at each iteration:

min
p
pH

�
YHR+Y � �2vD

	
p (16)

wherepHDp = tracefT H(P )R+T (P )g. Asymptotically
in the number of data, DIQML is globally convergent. In-
deed, asymptotically it is equivalent to the denoised criterion:

min
p
pHXHR+Xp (17)

whereHp = T (P )X . When working withg, the central
matrix gHXH

g R
+Xgg has exactly one singularity and the

solution it’s the minimal eigenvector. The use ofp leads to
a matrixpHXHR+Xp with (m � p)2 singularities, corre-
sponding to(m� p)2 ambiguities onP if the 1’s and 0’s are
not taken into account. Plain minimisation alleviates these
indeterminacies. In practice, with large but finiteM , the
Hessian of (16) is indefinite: we remove a quantity�D in-
stead of�2vD to make it positive definite, which leads to a
constrained minimisation onp and�. If we work with g, �
is chosen to renderYH

g R
�1Yg��Dg semi-definite (with one

singularity). Hence� is the minimal generalised eigenvalue
of YH

g R
�1Yg andD andg is the corresponding eigenvector.

Asymptotic global convergence has been proved in [6] for
the single user case and extends directly here. Unfortunately,



use ofg leads to merging some received signal samples and
simulations show that this method yields significantly poorer
performances than the use ofp (where them� p ’ones’ and
the ’zeros’ remain fixed). In the latter case, minimisation on
� is rather tricky and asymptotic global convergence still has
to be proved.

2.5 Pseudo-Quadratic ML (PQML)
The principle of PQML has been first applied to DML param-
eterised in terms of channel coefficients in [2]. The gradient
of the DML cost function (13) may be arranged asP(p)p,
whereP(p) is (ideally) positive semi-definite. The ML solu-
tion verifiesP(p)p = 0, which is solved by the PQML strat-
egy as follows: in a first stepP(p) is considered constant,
so the problem becomes quadratic and asP(p) is positive
semi-definite the Hessian is definite positive and a solution
can easily be found. This solution is used to reevaluateP(p)
and other iterations may be done.

The difficulty consists in finding the rightP(p) and espe-
cially to keep the Hessian definite positive. In our problem:

P(p) = YHR+Y � BHB (18)

T H (P )B = B�p� with B =
�
T (P )T H(P )

�+
T (P )Y

(� denotes the conjugate operation). The Hessian of (13)
is indefinite for finiteM : the corresponding solution in [2]
(where the problem is parametrised inH) is to take the
minimum-norm eigenvalue but this strategy does not work
except for high SNR.

PQML is closely related to IQML as the first term of the
central matrix in (16) and (18) are the same andE(BHB) =
�2vD. By analogy with IQML, we introduce an arbitrary�
and PQML becomes the following minimisation problem:

min
kpk=1;�

pH
�
YHR+Y � �BHB

	
p (19)

with definite positivity constraint on the Hessian.
If we work with g, � is again chosen to render

YH
g R

�1Yg � �BHg Bg semi-definite. Hence� is the mini-
mal generalised eigenvalue ofYH

g R
�1Yg andBHg Bg andg

is the corresponding eigenvector. Asymptotic global conver-
gence can be proved as for DIQML. The stationary points of
PQML are the same as those of DML, this is why PQML has
the same performance as DML. Asymptotically PQML gives
the global ML minimiser (forP ).

3 Semi-Blind Deterministic ML

We split the received burst according toY = [Y H
ts Y

H
b ]H

whereY H
ts = T (H)Ak+V ts contains the observations gen-

erated by known symbols only.Y b contains the observations
generated by unknown symbols and a mixture of known and
unknown symbols. Solving the DML criterion onY would
lead to joint estimation of the singular prediction filter and
the channel that would have to be solved under the orthogo-
nality constraintPT (H) = 0. We propose to use a simpler
algorithm whereP is estimated in a PQML way in a first
step, based onY H

b . The channel is then estimated using the

singular prediction filter relationP T (H) = 0 and the train-
ing sequence, leading to a combined criterion (note thatY ts

andY b are uncorrelated, so the linear combination of the two
criteria makes sense) :

min
H

(M �K)hHT (P
t
)T H(P

t
)h+KkY ts�T (H)Akk

2

(20)
where superscriptt denotes transpose of the blocks.

bh = K
�
(M �K):T (P

t
)T H(P

t
) +K:AH

k Ak

��1
:AH

k Y ts

(21)
whereh = vec(H), K is the number of known symbols and
Akh = T (H)Ak. FactorsK and (M � K) are used to
roughly balance the contributions of the blind and training
sequence part in the criterion.

4 Simulations

We consider i.i.d. BPSK symbols, a data burst of length
M = 200, two real channels each of length 5 and
m = 4 sub-channels, randomly generated. The SNR
is defined as(kHk2�2a)=(m�

2
v). The performance mea-

sure is the Normalised Root MSE (NRMSE) which is
computed over 100 Monte Carlo runs as NRMSE=q

1
100

P100

i=1 k
cH(i)

�Hk2=kHk2 and, in the blind case, the
mixing matrix U is retrieved such that, notingH(i) =

[H1(i) � � �Hp(i)] and �H = [H(0) � � �H(N1)], U =

�H
H �H=( �H

Hc�H).
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Figure 1: Performance of blind PQDML

We applied the PQDML strategy based onp, as prelimi-
nary simulations with the IQDML and PQDML gave signif-
icantly worse results when working withg. In the PQDML
algorithm, we simply put� as the generalised eigenvalue of
(YHR�1Y;BHB), which gave very good results as can be
seen here under. Actual minimisation of the criterion w.r.t.�

under the positivity constraint of the Hessian should lead to
better results at high SNR, where our simulations show that
performance is not so close to the Cramer-Rao Bound.



We made five iterations in the PQML algorithm and report
the performance after the first and fifth iteration. Intermedi-
ate simulations results show that the 3 first iterations should
suffice.

The semi-blind algorithm has been implemented for 20
known symbols (by user), here, there is no mixing matrix to
be estimated. These simulations (see figure 2) show clearly
the benefit of semi-blind w.r.t. training-sequence based chan-
nel estimation.
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Figure 2: Performance of semi-blind PQDML

Some insight can be gained in comparing the CRB’s for
blind estimation (where the mixing matrix is supposed to be
known) and semi-blind estimation for a few known symbols
(here 10, which is insufficient to do Training-Sequence based
channel estimation in our case) and 20. The closeness be-
tween the two first curves (see figure 3) show that for few
known symbols, these symbols are mainly used to separate
the sources (which is then perfect, opposed to blind source
separation techniques) ; adding more symbols then leads to
better channel estimation performance.

5 Conclusions

We have proposed several methods to solve the Blind and
Semi-Blind Deterministic Maximum Likelihood criteria to
estimate multiple FIR channels in a multi-user environment.

The Pseudo Quadratic Maximum Likelihood method is
shown to give the global ML minimiser inP and simulations
confirm that the performances are very close to the Cramer-
Rao bounds, in both the blind and semi-blind case. In the
blind case, for the channel we used, we have a good per-
formance until an SNR of 20 dB for a burst of 200 BPSK
symbols. In the semi-blind case, we can go even further in
the low SNRs. What the simulations show is that semi-blind
approaches, in a first time, are very efficient to separate the
sources and, if enough known symbols are used, lead to sig-
nificantly better performances than both blind and training
sequence approaches at moderate SNR. At low SNR, semi-
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Figure 3: CRB’s of blind and semi-blind DML

blind and training sequence approaches essentially yield the
same results.

Further work will include refinements on the� parame-
ter for the minimisation of (13) and development of a global
PQDML algorithm for the semi-blind approach, performing
joint minimisation onP andH using their orthogonality
property .
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