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ABSTRACT

A new adaptive approach for simultaneously selecting
the order and identifying the parameters of an AutoRe-
gressive model (AR) is presented. The proposed algo-
rithm is based on the reformulation of the problem in
the standard state space form and the subsequent imple-
mentation of a bank of fast a posteriori error sequential
technique (FAEST) filters, each fitting a different order
model. The problem is reduced then to selecting the
true model, using the Multi-Model Partitioning (MMP)
theory. Simulations illustrate that the proposed method
is selecting the correct model order and identifies the
model parameters, even in the case that the true model
order does not belong to the bank of FAEST filters. The
use of FAEST filters, reduce the computational effort,
especially in the case of large order AR models. Finally,
the algorithm is parallel by nature and thus suitable for
VLSI implementation.

1 INTRODUCTION

Adaptive filtering has been a central issue in the field of
signal processing for many years. Selecting the correct
order and estimating the parameters of an AR mod-
el, is fundamental in many application areas and the
related algorithms are part of many existing systems.
The problem of fitting an AR model to a given time se-
ries has attracted mmch attention because it arises in a
large variety of applications, such as adaptive control,
speech analysis and synthesis, radar, sonar, seismology
and biomedical engineering.

Several imformation theoretic criteria have been pro-
posed for the model order selection task. The most well
known of the proposed solutions for this problem include
the Final Prediction Error (FPE), Akaike’s Information
Criterion (AIC) that was proposed by Akaike [1], 2], [3],
the Minimum Description Length (MDL) Criterion that
was proposed by Schwartz [16] and Rissanen [15] and a
new approach based on the MDL criterion [13]. Most of
the techniques that are performed by the above criteria
are based on the assumption that the data are Gaus-
sian and upon asymptotic results. Furthermore, they
are two-pass methods; thus they can not be used n an
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on-line or adaptive fashion. In this paper, the method
that is presented for simultaneous AR model order se-
lection and identification is based on the adaptive MMP
filters [9] - [11]). Performance bounds for the MMP fil-
ters have been given i [6]. The method is applicable to
on-line/adaptive operation and is computationally effi-
cient. Furthermore, it can be realized in a parallel pro-
cessing fashion, a fact which make it amenable to VLSI
implementation. A similar method for AR model or-
der selection is found in [7], which is implemented using
a bank of convetional or modified Kalman filters. The
new method, by utilizing the computationally efficient
FAEST filters is significally more efficient for large AR
models [5].

The main points and the organization of this paper are
the following: In section 2, the AR model order selec-
tion and identification problem is stated. In section 3
the problem is reformulated, the adaptive multi-model
partitioning algorithm is briefly presented and it’s ap-
plication to the specific problem is discussed. In section
4, simulation examples and figures are presented that
demonstrate the performance of the method. Finally
section 5, summarizes the conclusions.

2 PROBLEM STATEMENT
An AR model can be represented as follows [4]:

Alg)y(t) = e(t) 1)

or
o0 = ailt — ) + e(t) @)

i=1

where N is the number of the noisy measurements of
the discrete time process y(t), e(t) is a zero-mean white
noise process, with variance E, not necessarily Gaussian,
n is the order of the predictor and a; : ¢ =1,... n, are

the predictor coefficients.
Let us further define the vector of coefficients as follows:

() = far(t),--o an ()] (3)

where 0 < ¢t < N (N denotes the number of samples)
and coefficients a; have been replaced by a;(t) to reflect



the possibility that they are subject to random pertur-
bations. This fact can be modeled by assuming that:

It +1) =00) +wlt), t=12,....N ()

where w(t) = [wi(t), wz(t),...,wn(t)] is a zero-mean
white noise process with variance ) (we assume that
e(t) and w(t) are mdependent). In order to complete the
system description we assume the case that the predic-
tion coefficients are constant in time, or slowly varying

(@ = 0), so (4) is replaced by:

It +1)=0@), t=12...,N (5)

The problem is now stated as follows: Given a set of
observations y(f) where 0 < ¢t < N, from an AR(n)
process we have to determine the unknown parameter
vector:

v=[n,d(t), K] (6)

Clearly the problem is two-fold: one has both to select
the order of the predictor and then to compute the pre-
dictor coefficients. Perhaps the most crucial part of the
problem is the former.

Remarks:

1. We have to assign values to the variance I of the
noise process e(t). Assessing the value of R is not
always an easy task. I R is not readily obtainable,
it can be estimated using a technique described in
[8]. The effect of estimating R via this technique is
investigated in [14].

2. We assume that an a priori mean of the vector 9(0)
can be set to zero when no knowledge about their
values is available before any measurements are tak-
en (we notice that is the most likely case). On the
other hand the usual choice of the initial variance of
the vector ¥(0), denoted by P(0/0) is P(0/0) = mlI,
where m is a large integer.

3. We assume that measurements of y(t), are set to
zero for ¢ < 0; this technique is well known as
“prewindowing”.

3 REFORMULATION OF THE AR MODEL
ORDER SELECTION AND IDENTIFICA-
TION PROBLEM

Let us now assume that the order n is unknown and
what we know is only that the true order satisfies the
condition ng < n < nprax. This parameter is assumed
to be a random variable with known or assumed a priori
pdf p(n/0) = p(n). It is clear that the true model is
one of a family of models described by the relations (4)
and (7) or (5) and (7), the true model being specified by
the true value of the parameter n. The problem is then
to select the correct model among various “candidate”

models. In other words, we have to design an optimal
estimator when uncertainly is incorporated i the signal
model.

The solution to this problem for large order AR models
which is described in the following, has been given by the
FAEST algorithm [5] using the MMP theory [9] - [11].
The MMP algorithm operates on the following discrete
model:

y(t) = hT(t/n)0(t) + e(t) (M)
where
BT = [t - Dyt 2yt =) ()

The time updating of the LS Filter is:
Z(t/n) = —y(t) + AT ({t/n)d —1/n)

=
J(t/n) = 9t — 1/n) + wp(t/n)e(t/n)

where af(t/n) is the otimal gain encountered in LS filters
and wp,(t/n) is the FAEST gain vector.
The optimal MMSE estimate of J(¢) is given by

) = [ dte/n)ptonft)dn o)

The model-conditional pdf p(n/t) is given by:

poft) = L)
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Equations (9), (10) pertain to the case where n’s pdf
is continuous in n. When this is the case, one is faced
with the need for a nondenumerable infinity of FAEST
filters for the exact realization of the optimal estimator.
The usual approximation performed to overcome this d-
ifficulty is to somehow approximate n’s pdf by a finite
sum [17]. Fortunately, in our case the sample space is
naturally discrete, so that no approximations are neces-
sary and the estimator is indeed optimal. Since this is
the case, the integrals m (9), (10) must be replaced by
summations running over all possible values of n. The

G(t/n) =



important feature of the algorithm is that all the filters
needed for its implementation can be independently re-
alized. A wide range of applications require high-speed,
real-time digital signal processing. Minimization of pro-
cessing time is efficiently achieved in a parallel process-
ing environment.

Figure 1, shows the new algorithm’s implementation.
This block diagram emphasizes the ability of implement-
ing the algorithm in parallel, thus saving enormous com-
putational time [12].
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Figure 1: The structure of the proposed method

4 SIMULATION EXAMPLES

The proposed algorithm has been tested extensively on
several simulation experiments. In this section two ex-
amples are discussed; first we present the case where the
true order model belongs to the FAEST filters” bank and
second the case where the correct order model satisfies
the condition ng < n < nprax but it does not exists in
the filters” bank. To reduce realization dependency of
the simulations we averaged over 100 Monte Carlo runs.
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Figure 2: The AR process

The data record is of length 2000 and they are produced
from an AR model of order 20 and the following coeffi-
cients’ values:

[ 1.32, 0.68, 1.04, —0.54, 0.25, —1.02, 0.39,

—0.22, 0.36, 0.1, 0.17, —0.29, 0.27, —0.35,

0.011, 0.062, 0.018, —0.047, 0.11, —0.067 |

Based i this model (n = 20), an AR system like that
of (5) and (7) was simulated. Figure 2, shows the true
AR process.

The added noise e(t) is a zero-mean white noise process
with variance R equal unity and the initial value for
P(0/0) is 10001.

Example 1: We have realized a bank of FAEST filters
which contains eight filters of order (5, 10, 15, 20, 25,
30 , 35, 40) respectively.
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Figure 3: The a posteriori probabilities
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Figure 4: The a posteriori probabilities

Example 2: We have realized a bank of FAEST filters
which contains eight filters of order (5, 10, 15, 25, 30, 35,
40, 45) respectively. Notice that the true order model
does not belong to the bank of FAEST filters.
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Figure 5: Parameter Estimates (+) - True Values (o)

Figure 3 and figure 4, depict the a posteriori probabili-
ties associated with each value of n, for the examples 1



and 2 respectively.

Figure 5 for the example 1 and figure 6 for the example
2, shows how the true parameter estimates (denoted by
+) tracks the true values of the parameters (denoted by

0).
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Figure 6: Parameter Estimates (+) - True Values (o)

5 CONCLUSIONS

The experiments, indicate that (a) in the case that the
true model is one of the models mcluded in the bank
of the FAEST filters the proposed method is selecting
the correct model order and identifies accurately the pa-
rameters and (b) in the case where the true model is not
included to the filters bank, the algorithm converges to
the closest model, m our experiment the model with
order n = 25, by means of the Kullback mformation
criterion minimization [6] and identifies successfuly the
parameters as the last five parameters tends to zero.
As shown by the experiment results as the algorithm
identifies the true model order, nipye, the p(nipye/t)
tends to unity and p(n/t) tends to zero, for n # nyrye.
Thus, when the order changes, on line, the algorithm
can sense the variation and is adapted to the true order
model.

The superiority of this method is that it works in real
time and even in the case that the system order is large
enough, the algorithm identifies precisely the true order
(by means of the MAP criterion) and the parameters
in a sufficient number of iterations. Furthermore, the
algorithm can be parallely implemented and also a VLSI
implementation is feasible.
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