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ABSTRACT

It is known that for the adaptive �ltering problem, the

Multi Model Adaptive Filter (MMAF) based to the Par-

titioning Theorem is the best solution. It is also known

that Genetic Algorithms (GAs) are one of the best me-

thods for searching and optimization. In this work a

new method, concerning multivariable systems, which

combines the e�ectiveness of MMAF and GAs' robust-

ness has been developed. Speci�cally, the a-posteriori

probability that a speci�c model, of the bank of the

conditional models, is the true model can be used as �t-

ness function for the GA. Although the parameters' co-

ding is more complicated, simulation results show that

the proposed algorithm succeeds better estimation of

the unknown parameters compared to the conventional

MMAF, even in the case where it is not included in the

�lters bank. Finally, a variety of de�ned crossover and

mutation operators is investigated in order to accelerate

algorithm's convergence.

1 INTRODUCTION

The adaptive �ltering problem, with unknown time-

invariant or time-varying parameters, has been a central

issue in the �eld of signal processing. A variety of solu-

tions to this problem has been proposed, that approxi-

mate the optimal solution, under certain conditions [1]-

[3]. Usually, these methods are based on the assumption

that the data are Gaussian and they are two-pass me-

thods. Therefore, they cannot be used in an on-line or

adaptive fashion. A di�erent adaptive approach, based

on the Partitioning Theorem, is the Multi Model Adap-

tive Filter (MMAF) [3], that operates on general, not

�The authors' names are in alphabetical order.

necessarily Gaussian data pdf's. The MMAF converges

to the optimal solution, if the model supporting the data

is included to the �lter's bank. Otherwise, it converges

to the closer model by mean of the Kullback information

criterion minimization. This is due to the fact that the

number of the �lters used in the MMAF bank is �nite.

It is clear that the evolution of the population of the

�lter's bank will improve the �lter's performance.

Among the existing adaptive identi�cation methods, we

are particularly interested in the partitioned adaptive

technique, since it is useful not only for identifying the

noise statistics but also for estimating the unknown

system parameters. Pioneer work in this area can be

found in [3], due to Magill and Lainiotis. It is known

that the linear �ltering problem with unknown time-

invariant or time-varying parameters, i.e. the adaptive

�ltering problem, reduces to a non-linear �ltering pro-

blem, which has major di�culties in its realization. In

particular, it is extremely di�cult to access the e�ect of

approximations made in the suboptimally realization of

non-linear �lters. However, partitioned adaptive �lte-

ring constitutes a partitioning of the original non-linear

�lters into a bank or set of much simpler linear elemen-

tal Kalman or Kalman-Busy �lters. This realization is

very simple to implement physically.

It is known that Genetic Algorithms (GAs) are one of

the best methods for searching and optimization [4, 5].

They apply genetic operators (reproduction, crossover

and mutation), in a population of individuals (sets of un-

known parameters properly coded), in order to achieve

the optimum value of the �tness function. By evolving

the best individuals, in each generation, they converge

to the (near) optimal solution. The main advantage of

the GAs, is that they use the parameter's values, instead



of the parameters themselves. In this way, they search

the whole parameter space.

In this work a new method which combines the ef-

fectiveness of MMAF and GAs' robustness has been de-

veloped. Speci�cally, the a-posteriori probability that a

speci�c model, of the bank of the conditional models, is

the true model can be used as �tness function for the

GA. The solution to this problem was �rst introduced

in [6, 7], where the case of scalar unknown parameters

was considered. In this approach we face the problem

for multivariable systems. Although the parameters' co-

ding is more complicated, simulation results show that

the proposed algorithm succeeds better estimation of

the unknown parameters compared to the conventional

MMAF. Furthermore, the algorithm identi�es the true

model in the case where it is not included in the �lters

bank. Finally, a variety of de�ned crossover and muta-

tion operators is investigated in order to accelerate the

algorithm's convergence.

The paper is organized as follows. In section 2 the pro-

blem of the discrete time adaptive estimation and the

MMAF are stated. In sections 2.1 and 2.2 the proposed

method and the GA structure are presented respectively.

Section 3 contains the simulation results, while section

4 summarizes the conclusions.

2 ADAPTIVE ESTIMATION IN DISCRETE

TIME

A multivariable discrete time linear system is described

by the following vector di�erence equation:

x(k + 1) = �(k + 1; k; �)x(k) + B(k; �)w(k) (1)

z(k) = H(k; �)x(k) + v(k) k = 1; 2; : : : (2)

where x(k) is the n-dimensional state vector, �(�) is the
n�n state transition matrix, B(�) is an n�p matrix,

and fw(k); k = 1; 2; : : :g is a p-vector Gaussian white

noise sequence, w(k) � N (0; Q(k; �)). z(k) is the m-

vector observation,H(�) is anm�nmatrix function, and

fv(k)k = 1; 2; : : :g is an m-vector Gaussian white noise

sequence, v(k)�N (0; R(k; �)). The distribution of x(0)

is Gaussian, x(0) � N (x(0; �); P (0; �)), and x(0), w(k)

and v(k) are assumed to be mutually independent. The

unknown parameter vector � has a known or assumed

a-priori probability p(�). The discrete time version of

Lainiotis partition theorem is presented in the following

theorem [2]:

Given the observation data Zk = fz(l); l = 1; 2; : : : ; kg,
the MMSE estimate x̂(k=k) of x(k) is given by:

x̂(k=k) =

Z
x̂(k=k; �) p(�; k) d� (3)

where x̂(k=k) = E[x(k)=Zk] and x̂(k=k; �) �
E[x(k)=Zk; �)]. The a-posteriori probability of � given

Zk, p(�=Zk) = p(�=k), is provided by the relation:

p(�=k) =
L(k=�) p(�=k � 1)R
L(k=�) p(�=k � 1) d�

(4)

where the L(k=�)s are the model conditional scalar like-

lihood. In the case that the values of the vector � are

discrete the integrals in relations (3) and (4) must be

replaced by summations running over all possible values

of the elements of the vector �.

Multimodel partitioning algorithms have been shown to

converge to the model closer to the true one - in the

sense of the Kullback information measure minimiza-

tion - when the true model is not a member of the space

spanned by the �lter model [3]. In this case, if a speci�c

estimate of � is desired, it can be found as a weighted

sum of the discrete parameter sets:

�̂ =

MX
i=1

�i p(�i=Zk) (5)

Thus, we can produce the MMSE estimate x̂(k=k) at the

same time as identifying the unknown parameter vector

�.

2.1 Adaptive Estimation In Discrete Time U-

sing MMAF-GAs

In the system model mentioned and described at the

previous paragraphs there are two quantities which must

be estimated; the state x(k) and the unknown parame-

ter vector �. The estimation method is the Multi Model

Adaptive Filter as it is obtained from Lainiotis partition

theorem. Our goal is to achieve the optimal estimation

for both estimated quantities and particularly for the

unknown parameter vector �. The only information we

have for this vector is that it belongs to a set or a space

(�nite or in�nite) or it has a speci�c probability distri-

bution (follows speci�c probabilistic rules-distribution).

It is obvious that if the unknown vector belongs to a

�nite-discrete set with small cardinality, the MMAF is

the only appropriate and most e�ective method to es-

timate this unknown vector. It is also widely known

that GAs perform better when the space which will be

searched has a large number of elements. So, we do not

need GAs when the unknown vector belongs to a �nite-

discrete set with small cardinality. GAs can be used

when the unknown vector belongs to a space with large

cardinality or belongs to an in�nite space or follows a

probability distribution. Then, we should optimize with

GAs the a-posteriori probability function for the vari-

ous values of the unknown vector �. That means that

we have to optimize the probability described from re-

lation (4), for discrete �, i.e. the following probability

function:

p(�i) =
L(k=�i) p(�i=k� 1)PM

j=1L(k=�j) p(�j=k � 1)
(6)



which will be the �tness function for the GAs, for the

several values of the unknown parameter vector � un-

derlying to the above constraints.

2.2 The GA Structure

The structure of GA who has been developed is de-

scribed in the following: First we made an initial po-

pulation of m matrixes each of them contains a possible

value of the unknown parameter vector �. Because the

elements of � belong to an in�nite space (even when fol-

low a probability distribution, the possible values are

in�nite), that consists a small discretesation of this in-

�nite space, which is absolutely reasonable as GAs can

search in a continuous space only after a discretesation

of the space. For each of these matrixes we apply an

MMAF and have as result the a-posteriori probability

of the value of the matrix. This is the �tness of each

matrix (as mentioned above the �tness function is the

a-posteriori probability function). Since we have the �t-

ness of each matrix we are able to perform the other

genetic operators, i.e. reproduction, crossover and mu-

tation. The reproduction operator will be the classic

biased roulette wheel selection according to the �tness

function value of each matrix. As far as crossover is con-

cerned, we will use �ve crossover operators: Uniform

Crossover, Even-Odd Crossover, One-Point Crossover,

Arithmetic Crossover and Blend Crossover. Finally, we

will use three mutation operators: Flip Mutator, Swap

Mutator and Gaussian Mutator. This new generation of

matrixes iterates the same process as the old one and all

this process may be repeated as many generations as we

desire or till the �tness function has value 1 (one) which

is the maximum value it is able to have as a probability

[6, 7].

3 EXPERIMENTAL RESULTS

The MMAF �lters are implemented in MATLAB due

to MATLAB's capability of manipulating matrices in a

very easy and quickly way while the GA is implemented

in an object-oriented enviroment (C++) using GAlib.

GAlib is a very powerfull object-oriented programming

tool for implementing GAs which has been developed in

M.I.T.

The �rst experiment which has been used to con�rm our

last assumptions retains to a speci�c two dimensional

system with unknown measurement matrix, which is the

following:

x(k + 1) =

�
0:93 0

0 0:93

�
� x(k) +

�
1 0

0 1

�
�w(k)

z(k) = H(k; �) � x(k) + v(k)

where k = 0; 1; : : :; 30 and the 2�2 matrix H is the un-

known measurement matrix to be estimated, H[i; j] 2
[0; 1].

Figure 1: The evolution of the a-posteriori probabilities

for the �rst experiment.

Also, P (0) =

�
0:95 0

0 0:95

�
, Q =

�
0:8 0

0 0:8

�
and

R =

�
0:63 0

0 0:63

�
.

The �rst experiment's results compare the a-posteriori

probability resulted from a single MMAF with the evo-

lution and improvement which appears after some GA's

generations. The presented results in Figure 1 show the

di�erence between MAF before performing GAs and af-

ter performing GAs.

The second experiment which has been used to con-

�rm our last assumptions retains to a speci�c two di-

mensional system with unknown measurement matrix,

which is the following:

x(k+ 1) =

2
66664

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

�0:022 0:155 0:065 �0:809 1:387

3
77775

� x(k) +

2
66664

0 �0:004 0 0 0

0 �0:021 0 0 0

0 �0:051 0 0 0

0:001 �0:07 0 0 0

0:009 �0:062 0 0 0

3
77775 �w(k)

z(k) = H(k; �) � x(k) + v(k)

where k = 0; 1; : : :; 30 and the 3�5 matrix H is the un-

known measurement matrix to be estimated, H[i; j] 2
[0;�30].
Also,

P (0) =

2
66664

0:0001 0 0 0 0

0 0:0001 0 0 0

0 0 0:0001 0 0

0 0 0 0:0001 0

0 0 0 0 0:0001

3
77775 ,



Figure 2: The evolution of the a-posteriori probabilities

for the second experiment.

Q =

2
66664

0:201 0 0 0 0

0 0:201 0 0 0

0 0 0:201 0 0

0 0 0 0:201 0

0 0 0 0 0:201

3
77775 and

R =

2
4 1:026 0 0

0 6:908 0

0 0 158:658

3
5.

The second experiment's results compare the a-

posteriori probability resulted from a single MMAF

with the evolution and improvementwhich appears after

some GA's generations. The presented results in Figure

2 show the di�erence between MMAF before performing

GAs and after performing GAs.

Furthermore, according to both experiments' results the

following conclusions were come to:

� As the population's size grows, the algorithm

converges faster giving an a-posteriori probability

higher than 0.999.

� As the crossover's probability grows, the algorithm

converges faster giving an a-posteriori probability

equivalent to or even higher than 0.999.

� As the mutation's probability grows, the algorithm

converges faster giving an a-posteriori probability

equivalent to or even higher than 0.999.

� As far as crossover operators are concerned, faster

convergence is reached by using the Uniform

Crossover and the Arithmetic Crossover operators.

� As far as mutation operators are concerned, faster

convergence is reached by using the Flip Mutation

and the Gaussian Mutation operators.

4 CONCLUSIONS

In this work a new evolutionary method for adaptive

estimation of multivariable discrete time systems, with

unknown parameters, has been proposed. The method

combines the well known Adaptive Multi Model Parti-

tioning theory with the e�ectiveness of the GAs. Simu-

lation results show that the method performs signi�cally

better than the conventional MMAF. Although the pa-

rameter's coding is more complicated a variety of de�ned

crossover and mutation operators was investigated, for

the multivariable case, resulting in accelerations of the

algorithm's convergence. Furthermore, the evolution of

the initial population results to the identi�cation of the

true model, even in the case where it is not included in

the in the initial population of the �lter's bank. Finally,

the method can be implemented in a parallel enviro-

ment, since the MMAF as well as the GA are naturally

parallel structured, thus increasing the computational

speed.
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