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ABSTRACT
Working at baud rate regime (one sample per symbol), it is
well known the equivalence between the linear prediction
problem and a proper linearly constrained power
minimization criterium [1]. However, the success of this
criterium as a blind equalization technique is limited to the
minimum phase channel condition. On the other hand, if it
is assumed a multichannel model (several samples per
symbol or several sensors), it has been shown, under certain
hypotheses, the minimum phase character of the
multivariate transfer function; this property is in fact which
allows one of the main approaches of multichannel blind
equalization as a multivariate linear prediction problem [2].
Our main goal is to introduce a family of adaptive
algorithms dealing with the formulation of the blind
equalization task as a linearly constrained cost function in
order to generalize the baud rate case results: a detailed
analysis of the mentioned cost functions is included and
also supported by several computer simulations.

1. INTRODUCTION
Blind equalization is a fundamental signal processing
technique that retrieves the unknown transmitted sequence
by analyzing only the characteristics of the channel output.
Conventional equalization schemes are suitable when just
one sample per symbol is achieved; in a generic case,
information on Higher Order Statistics is required for
properly deconvolution. Probably, one of the first schemes
dealing with the blind equalization task was developed in
[1] in the seventies: that work pointed out that a minimum
phase channel may be inverted by the minimization  of the
received sequence power if the first coefficient of the one-
sided (infinite) equalizer is fixed. Also in that paper is
remarked the relationship between this formulation and the
classical linear prediction problem. However, the minimum
phase assumption looks very restrictive if we are
considering a baud rate system as it was usually done. From
an intuitive point of view, the first tap anchoring, provides
the preservation (for minimum phase channels only) of the
actual symbol and therefore only ISI is minimized.

On the other hand, it has been shown that
multichannel equalization overcomes the main drawbacks
of conventional blind equalization techniques exploiting the
redundancies of SIMO (single input-multiple output). Many

techniques have been developed in the recent years for
estimating the unknown channel (identification) or
recovering the transmitted sequence (equalization).

If we concentrate in equalization, one of the main
approaches has shown that the multichannel moving
average process is also a finite order autorregresive process:
this is really a remarkable fact since system input
characteristics can be estimated by applying multivariate
linear prediction on the system output [2]. This formulation,
allows us a new interpretation of the multichannel
deconvolution techniques extending the result mentioned
previously of classical blind equalization: the equivalence
between a linear prediction scheme and a linearly
constrained power minimization algorithm. Two main
advantages must be pointed out for the multivariate case:
the minimum phase characteristic of the multivariate
transfer function (if FIR subchannels do not share common
zeros) and the fact that FIR channels can be also exactly
inverted by  mutivariate FIR equalizers.

More indeed, another approach described in the
literature was proposed in [3]: this contribution is based on
a deterministic model for the input signal and on the
exploitation of cross relations between a channel output
pair. The basic idea behind this approach is to exploit
different instantiations of the same input signal by multiple
FIR channels. Let observe that an stochastic cross-relation
minimization will force the cancellation of the input signal
because of the SIMO structure: however, if we recall the
fact that a linearly constrained scheme is proposed in order
to preserve the actual symbol, the stochastic cross-
correlation will cancel only the ISI; therefore, tap anchoring
allows again the possibility of exploiting cross information
between subchannels.

Our proposal intends to follow the formulation and
analysis of a family of blind multivariate equalizers,
exploiting the fact that tap anchoring (in this case, a finite
set of coefficients of the predictor matrix) assures the
preservation of the actual symbol. This strategy provides a
proper decomposition of the deconvolved multivariate
signal in two terms: one of them as a scalar version of the
actual symbol whose equalizer matrix coefficient is fixed,
meanwhile the other is a linear combination of previous
transmitted symbols affected by the free and unknown
coefficients of the predictor. The preservation of the actual
symbol provides a simple criterium for properly



deconvolution: the minimization of a linear combination of
powers for every virtual channel and maybe also the
extension to the minimization of cross powers between
couples of virtual channels. This criterium can be easily
improved by incorporating some salient features of the
signal,  e.g. its discrete format or constant modulus
character. In the sequel they will labeled as LCMBE
(Linearly constrained Multichannel Blind Equalizers).

2. PROBLEM STATEMENT
The scenario we have considered is a linear digital
modulation (PAM/QAM/PSK) over a linear time invariant
channel with additive white Gaussian noise (AWGN):
therefore the received signal is given by:
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where s(k) is an independent and identically distributed
(i.i.d.) sequence of symbols and w(t) is the noise (AWGN),
T is the baud duration, and h(t) is the equivalent impulse
response of the transmit filter, channel and receive filter.
Our reception strategy consist in either oversampling the
received signal by an integer factor q>1, considering an
antenna array (q antennas) or either both of them. Any case
lead us to a cyclostationary scalar-valued signal model or a
stationary vector-valued signal. Therefore, we can consider
the received (vector-valued) signal as the noisy output of a
qx1 time invariant polynomial transfer function h(z) driven
by the scalar sequence s(n). Assuming a causal channel and
a time span limited to (M+1) symbols duration, equation (1)
can be written as follows:
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where H(z) is the multivariate transfer function. The main
result, developed is several papers [4-5], establishes the
minimum phase character of H(z) providing the
equalization task as a multivariate linear prediction scheme.

Let us discuss our proposal. Considering the
previous formulation now neglecting the noise effect, we
can express in the discrete time domain as follows:

( ) ( )y Hsn n= (3)

where matrix H is full column rank and block Toeplitz (i.e.
the different subchannels do not share common zeros as is
usually  assumed).

Defining the innovation vector i(n) as the
conventional linear prediction problem (considering an
order P linear prediction filter), the deconvolved sequence
yields:
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where B(k) are the (qxq) matrix coefficients of the
prediction error filter  to be identified.

Let us observe that this relationship can be
considered as a multivariate linearly constrained filtering:
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linearly constrained because the tap anchoring A0=B(0)=Iqxq

(a proper identity matrix) meanwhile A1 =[B(1)  B(2)  ...
B(P)] represents the free coefficients.

Let us suppose, for simplicity, a bivariate system
(the extension is straightforward for a generic scenario as
we will show later on) whose impulse responses are denoted
as follows:

 
( ) ( ) ( )[ ] [ ]
( ) ( ) ( )[ ] [ ]

Channel a:

Channel b:

h h

h h

a a a a
t

a a
t

b b b b
t

b b
t

h h h M h

h h h M h

= =

= =

0 1

0 1

0 1

0 1

L

L

    (6)

decomposed in the first sample and the remainder for
convenience. Let us also, decompose the filtering matrix H
in the following way:
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Let us remark the attractive expression for the
deconvolved sequence i(n) after the linearly constrained
multivariate linear filtering by the prediction matrix A.
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where s0 denotes the actual symbol and s1 represents a
vector collecting the samples of previous symbols. Equation
(8) shows that the tap anchoring (I2x2) really preserves the
actual symbol  meanwhile the second term represents the
ISI to be canceled.

Figure 1 shows the block diagram of the
mutichannel transmission and the multivariate linearly
constrained equalizer; the optimization criterium will be
derived in the next section.



Fig.1. Block diagram of a linearly constrained multivariate
filtering

3. THE LCMBE (LINEARLY CONSTRAINED
MULTICHANNEL BLIND EQUALIZERS)

The main goal of our proposal is the derivation of a family
of optimization criteria for the deconvolution of a
mutivariate system exploiting the fact remarked in equation
(8): the decorrelation between the desired symbol and the
ISI. Let us proceed in the following way, describing several
optimization criteria:

3.1 Description  of criterium I.
As we mentioned in the introduction, the univariate linear
prediction method is equivalent to a linearly constrained
power minimization problem. The extension to the
multivariate case is straightforward in terms of the trace
operator (tr):
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It can be shown that the analysis of the stationary
points of equation (9) lead us to the well known result:
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showing the solution of the multivariate Yule-Walker
equations (usually eq. (10) is expressed in terms of the
Moore-Penrose pseudo-inverse #):
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The Hessian matrix of (9) shows the quadratic character of
the cost function:
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which is clearly definite positive due to the Toeplitz nature
of matrix H2H2

H.

3.2 Description of criterium II.
Likewise, let us point out that, although the proposed
criterium J1 performs essentially as the linear prediction
method, it can also be exploited the decorrelation between
different subchannels: note that imposing the decorrelation
between subchannels (by couples therefore forcing a second
order algorithm) the ISI will be eliminated since the actual
symbol is preserved by the tap anchoring; in fact, in order to
guarantee the real character of the cost function using only
second order statistics, we have considered the following
cost function:
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We have shown that this function is also quadratic
achieving the same gradient and Hessian as J1 (see
equations 10 and 12). Let us remark that this criterium will
behave better in white noisy environments due to the noise
decorrelation between samples.

3.3 Description of criterium III.
Combining both criteria J1 and J2, we propose a linear
combination of equations 9 and 13 as follows:
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where operator ℜ means real part and parameter α provides
a different weight for both criteria (the selected value can be
determined by experimentation or maybe by an adaptive
updating).

3.4 Description of criterium IV.
The later criterium can be improved by exploiting the
constant modulus nature of the signals by introducing a
linearly constrained CMA-like cost functions. This
criterium is very popular in conventional blind equalization
because it usually achieves a satisfactory performance; in
the multivariate case, its interest is increased by the fact of
its globally convergent behavior [6]. Exploiting the
‘constant modulus’ feature of data transmission, the
algorithm convergence speeds-up:
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where R is the Godard constant.
The analysis of stationary points is quite more

complicated in this case due to the nonlinearity involved in



the constant modulus cost function. However, it can be
argued that equation 15 is really in fact the linear
combination of two globally convex cost functions: the first
term is globally convex because it is well known that a
linear constrained globally convex function is also globally
convex and second term convexity is shown in equation
(12).

3.5 Description of criterium V.
A similar behavior can be analyzed just considering the
Godard parameters also adaptive, playing the role of an
adaptive gain tracking the values of the firs samples in the
virtual channels (assuming α=0.5).
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Let us recall that in previous criteria (J1 to J4),
once the innovation is white, the transmitted symbol must
be estimated (usually by a subspace technique from the
innovation covariance matrix). In the present criterium, let
us point out that the evolution of constants γi, allows us the
proper linear combination of the innovation components for
direct estimation of the transmitted sequence [7].
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4. SIMULATION RESULTS
To show the ability of our proposals to properly equalize a
multichannel system, we have consider a binary
transmission over an scenario of a  bivariate system whose
impulse response is given in table 1; the Gaussian noise
power is set to -20 dB, and we have considered a linear
prediction order of two. Also, we have introduced an
automatic gain control in order to equalize the evolution of
all the equalizers with the same step size. This last criterium
J5 (whose simmulation are included) provides the best
observed performance, but however, the behavior of criteria
J1 to J4 are at this moment under study for several scenarios
and constellations in order to provide a wide set of
comparative performances.

h1 1.1650 0.0751 -0.6965
h2 0.0352 -0.0697 0.1696

Table 1

5. SUMMARY AND CONCLUSIONS
We have shown that tap-anchoring allows the exploitation
of some of the special features related with SIMO system:
the minimum phase character of the multivariate transfer
function and the different instantiations of the same input
signal by multiple FIR channels. A family of linearly
constrained cost functions is proposed in order to
deconvolve the transmitted sequence as a trade off between
convergence speed and computational complexity.

Fig.2 Learning Curve

Fig.3 Deconvolved sequence

Fig.4 Evolution of gain constants γ1, γ2
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