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ABSTRACT

Blind identi�cation of a wireless communication channel
is an important issue in communication system design.
Most existing blind system identi�cation techniques pro-
cess the unknown information of the system from its out-
put only. However, in many practical situation partial
knowledge of the system transfer function is available.
By relying on this known information, the performance
of channel identi�cation and equalization can be signif-
icantly enhanced. In this paper, we introduce a new
system identi�cation technique that exploits both the a
priori knowledge of the pulse shape �lter and the multi-
path channel propagation model. The approach consists
�rst in processing the cyclo-spectrum of the system out-
put that is shown to be superimposed exponential func-
tion of the channel propagation delays and attenuations.
Then, the frequency parameters, i.e., channel propaga-
tion parameters, are later estimated using the Matrix
Pencils (MP) frequency estimation method [7].

1 Introduction

Blind system identi�cation (BSI) is important in appli-
cations such as data transmission, reverberation can-
cellation, seismic deconvolution, and image debluring.
Recently, there is a strong interest in the identi�cation
problem where the available data can be modeled as
outputs of multiple parallel channels which are driven
by an unknown input. This problem is largely moti-
vated by blind channel identi�cation and equalization
for mobile data communication. In fact, this multichan-
nel problem arises when the output of a data commu-
nication channel is sampled at a rate higher than the
baud rate or when radio waves coming from the trans-
mitter are sampled by multiple spatially distributed sen-
sors at the receiver [4]. Using fractionally sampled data
for blind channel equalization appears to be a new re-
search trend since Sato's work [3]. Since the works by
Tong et al [1] and Gardner [2], the world has seen a
great research interest in blind identi�cation of single-
input multiple-output (SIMO) system using second or-
der statistics (SOS) based methods [5, 6]. The SOS
based approach is attractive because it requires much

less samples than the traditional higher order statistic
(HOS) based approach.
However, most of the SOS based BSI methods are de-

signed to identify the entire discrete channel including
the pulse-shaping and receiver �lters. In practice, the
overall channel is not completely unknown. It is typ-
ical that the only unknown part of the channel is the
multipath [10, 11]. By using this a priori information,
the number of unknown channel parameters is signif-
icantly reduced leading to signi�cant performance im-
provement, especially for the sparse multipath channel
[9, 11].
In [11], a modal analysis method for blind system

identi�cation has been presented. This method esti-
mates the unknown channel through the estimation of
the propagation parameters (i.e., delays and attenua-
tions) using the power spectrum of the observation. We
propose here an attractive alternative method that im-
proves on the method in [11] by exploiting more infor-
mation (i.e., cyclo-spectra) of the observed signal. In the
proposed method, we exploit also the particular multi-
path propagation model to cast the blind channel iden-
ti�cation problem into a superimposed exponential pa-
rameter estimation problem.

2 Problem Formulation

The continuous-time output from a linear, time-

invariant, baseband communication channel driven by
PAM/QAM sequence is given by:

x(t) =

1X
l=�1

h(t� lT )u(lT ) + w(t) (1)

u(lT ) =
X
k

sk�((l � k)T ) (2)

where x(t) is the channel output process, h(t) is the
channel impulse response, fskg the sequence of infor-
mation symbols, 1=T the symbol transmission rate, and
w(t) an additive noise process. The following conditions
are assumed in the paper:
A1. The symbol interval T is exactly known.
A2. fskg is zero mean, and E(sks

�
l ) = �(k� l), where



�(t) is the discrete-time Dirac function.
A3. w(t) is zero mean, white, and uncorrelated with

the source signal fskg.
A4. h(t) is the global impulse response that is given

by
h(t) = p(t) � g(t)

where

g(t) =

M�1X
i=0

�i�(t� �i)

is the unknown multipath propagation channel �lter and
p(t) is the known pulse shape and receipt �lter, i.e.,
p(t) = pt(t) � pr(t) where pt and pr are the transmit
(pulse shape) and receipt �lters1, respectively.
The objective here is to estimate, under the above as-

sumptions, the multipath propagation channel through
the estimation of the delay and attenuation parameters
f�i; �ig.

3 An SOS-Based Method

In this section, we �rst recall the principle of the ma-
trix pencil (MP) method as shown in [7]. Then, we
show how we can apply the MP method to estimate the
multipath channel parameters by using the second order
cyclo-spectra of the system output.

3.1 Matrix Pencil Method

Consider a noise free exponential data sequence which
can be described by:

x(t) =

M�1X
i=0

aie
jfit; 0 � t � N � 1

where ai and fi are the amplitude and frequency of the
i-th sinusoids, respectively (with fi 6= fj for i 6= j).
The matrix pencil approach relies on the following model
inherent in the exponential signals [7]: De�ne

x(t) = [x(t); � � � ; x(N � L+ t� 1)]T

X0 = [x(L� 1); � � � ;x(0)]

X1 = [x(L); � � � ;x(1)]

where \T 00 denotes the transpose and L is a chosen pa-
rameter called the pencil parameter (it satis�es M �
L � N �M). It is shown in [7] that

�
X0

X1

�
=

�
ZLA

ZLAZ

�
ZR (3)

where ZL and ZR are full rank matrices, A =
diag(a0; � � � ; aM�1), and Z = diag(ejf0 ; � � � ; ejfM�1).
From (3), we can see that ejfi ; i = 0; � � � ;M � 1 are the
rank reducing number of the matrix pencil X1 � zX0.
To estimate the frequency parameter (i.e., Z), we can
proceed as follows:

1The receipt �lter is generally matched with the transmit �lter
so that pr(t) = p�

t
(�t).

� Estimate E the matrix given by the M 2 dominant

singular (left) eigenvectors of X
def
= [XT

0 XT
1 ]
T . We

have

range(E) = range(X) = range(

�
ZLA

ZLAZ

�
)

and thus, there exists a non-singular matrix T sat-
isfying

E =

�
E0

E1

�
=

�
ZLA

ZLAZ

�
T

� Estimate ejf0 ; � � � ; ejfM�1 as the eigenvalues of

U = E
#
0 E1 = T�1ZT

where E#
0 denotes the pseudo-inverse of E0. Then,

estimate the amplitude parameters using a least-
squares �tting approach.

3.2 Cyclo-spectra of the system output

The actual channel output x(t) as in (1) is cyclostation-
ary instead of stationary. It can be veri�ed that for a
stationary channel input sk (assumption A2) and sta-
tionary noise w(t) (assumption A3) we have

Rx(t1; t2)
def
= E(x(t1)x

�(t2))

=
X
k

h(t1 � kT )h�(t2 � kT ) +Rw(t1 � t2)

= Rx(t1 + T; t2 + T )

where Rw(t1� t2) = �2�(t1� t2) is the covariance func-
tion of the noise. For simplicity, we will assume that �2

is known or a priori estimated. As we can see, x(t) is a
second order cyclostationary process with fundamental
period T . Its cyclic autocorrelation function is de�ned
by:

R�k
x (�)

def
=

1

T

Z T=2

�T=2

Rx(t; t� �)e�j2��ktdt (4)

=
1

T

Z 1

�1

h(t)h�(t� �)e�j2��ktdt+
�2

T
�(k)�(�)

where �k = k=T for a given integer k. Correspondingly,
the second order cyclo-spectrum (also known as spectral
correlation density) is given by

S�kx (!)
def
=

Z 1

�1

R�k
x (�)e�j2�!�d�

=
1

T

Z 1

�1

Z 1

�1

h(t)h�(t� �)ej2�!(t��)

e�j2�(!+�k)tdtd� + �2�(k)

=
1

T
H�(!)H(! + �k) + �(k)

�2

T
(5)

2The number of sinusoids M can be estimated by using the
recently developed LS detection method [8].



where the channel frequency response is given by

H(!) =

Z 1

�1

h(t)e�j2�!tdt

Under assumption A4, we have

H(!) = P (!)G(!)

G(!) =

MX
i=1

�ie
�j2��i! (6)

G(!) and P (!) are the Fourier transforms of g(t) and
p(t) respectively. Since P (!) is known, we can compute

F (l)
def
=

T (S�0x (l�!)� �2)

jP (l�!)j2

= jG(l�!)j2

=
X

0�i;j�M�1

�i�
�
j e
�j2�(�i��j)l�! (7)

where �! is a chosen frequency step satisfying
maxi;j j(�i � �j)�!j < 1. And for each cyclo-frequency
�k = k=T

S(k)
def
=

T (S�kx (0)� �(k)�2)p
F (0)P �(0)P (k=T )

= G�(0)G(k=T )

=
G�(0)

jG(0)j

M�1X
i=0

�ie
�j2k��i=T (8)

As we can see, S(k) is a superimposed exponential

signal with frequencies 2��i=T and amplitudes G�(0)
jG(0)j

�i,

i = 0; � � � ;M � 1. Therefore, we can �rst estimate the
delays (up to integer multiples of T ) and the attenua-

tions (up to a common unitary scalar, i.e., G�(0)
jG(0)j) from

the sequence S(k). Later, we can fully estimate the de-
lays, i.e., estimate the integer multiples of T , by using
the sequence F (l).

Remark: By using the second order statistics informa-
tion, i.e., the cyclo-spectra G�(!)G(! + k=T ), we can
at best estimate the unknown channel attenuations up
to a common unitary scalar and the unknown channel
delays up to a common integer multiple of T since

~G�(!) ~G(! + k=T ) = G�(!)G(! + k=T )

for any ~G(!) = c
PM�1

i=0 �ie
�j2�(�i+nT )! where n is a

given integer and jcj = 1.

We take advantage of this indeterminacy to assume,
without loss of generality, that the delay correponding to
the strongest coe�cient �i0 (j�i0 j = maxi j�ij) satis�es
0 � �i0 < 1.

3.3 Implementation

In summary, we have the following algorithm:

� Choose p > M and let the sampling interval be
� = T=p. The oversampled discrete signals are

xi = x(i�); hi = h(i�); and wi = w(i�)

xi is a discrete time cyclostationary process with
period p.

� Estimate the correlation function of xi, i.e Rx(n+
m;n) = E(xn+mx

�
n); n = 0; � � � ; p� 1 as

R̂x(n+m;n) =
1

T

X
k

xn+m+kpx
�
n+kp

Then, for k = �p+1; � � � ; p� 1, estimate the cyclic
autocorrelation functions of xi as

R̂�k
x (m) =

p�1X
n=0

R̂x(n+m;n)e�j2�n�k ; �k = k=p

� Choose �! small enough and estimate the power
spectrum as

Ŝ�0x (l�!) =
X
m

R̂�0
x (m)e�j2�lm�!

Then, estimate the sequence F (l) as de�ned in (7).

� Estimate the cyclo-spectra S�kx (!) at the frequency
! = 0

Ŝ�kx (0) =
X
m

R̂�k
x (m)

Then, estimate the superimposed exponential se-
quence S(k) as de�ned in (8).

� Apply the MP method to S(k) to estimate the delay

and attenuation parameters, i.e., f�̂i; �̂ig, up to the
indeterminacies shown above.

� Apply the MP method to F (l) to estimate the
M(M � 1)=2 parameters f~�i � ~�jg0�i<j�M�1 and

their corresponding coe�cients f~�i~�
�
jg.

� Select from theM(M�1)=2 parameters those corre-
sponding to �i��i0 ; i 6= i0 as follows: for each i 6= i0
we correspond the element in the set X = f~�i� ~�jg
that satis�es:

min
x2X

j�̂i�̂
�
i0
� xj

assuming implicitly that �i 6= �j for i 6= j.

Then, estimate the delays as

�i �

�
(~�i � ~�i0) + �̂i0 if i 6= i0

�̂i0 if i = i0



3.4 Some Comments

W give here some important remarks on the above BSI
approach:

� Table 1 shows an example of sparse multipath chan-
nel used by ATTC [11]. As we can see, the channel
transfer function is �nite but corresponds to a high
degree polynomial function (in this example, the
degree d is over 106) with very few non-zero coef-
�cients. The block-Sylvester matrix corresponding
to the polyphase channel transfer functions (see [4]
for more details) is a sparse matrix that is ill con-
ditioned due to close common roots phenomenon.
This is the reason why subspace methods provide
very poor performance estimation in this context
[11]. Moreover, subspace techniques are computa-
tionally unattractive in this case due to the large
dimension of the block-Sylvester matrix given by
pW � (W + d); W > d where d is the polynomial
degree and p is the oversampling rate.

Table 1: A sparse multipath channel used by ATTC

Path Delay Phase Atten.

1 0 T (0 �s) 288o 20 dB

2 9.68 T (1.8 �s) 180o 0 dB

3 10.49 T (1.95 �s) 0o 20 dB

4 19.37 T (3.6 �s) 72o 10 dB

5 40.35 T (7.5 �s) 144o 14 dB

6 106.52 T (19.8 �s) 216o 18 dB

On the other hand, the proposed method provides
good performance estimation in this context (in this
example, only 6 delay and attenuation parameters
have to be estimated). Another unique aspect of
this approach is its ability to estimate the multi-
path transfer function even if the polyphase chan-
nels share common zeros.

� In [11], a modal analysis method to BSI has been
proposed. Roughly, the idea of this method is to
estimate the frequency and amplitude parameters
of the function

jG(!)j2 =
X
i;j

�i�
�
je
�j2�(�i��j)!

that are given by �i � �j and �i�
�
j , respectively.

Then, in a second step, it uses a non linear inverse
transform to estimate the propagation parameters,
i.e., delays and attenuations. The main drawbacks
of this method are (i) the amplitudes �i�

�
j can

be very small leading to poor estimation accuracy
of their corresponding frequency components, e.g.,
j�1�3j = �40dB in the example given by Table 1,
(ii) the non linear inverse transform is computa-
tionally expensive and is not robust in the situa-
tion of low or moderate SNR or short sample size.

In comparison with this approach, our method is
computationally much simpler, and is expected to
be more robust to noise and �nite sample e�ects.

4 Conclusion

We presented a knowledge based modal analysis ap-
proach for blind system identi�cation. The proposed
method exploits both the a priori knowledge of the
pulse shape �lter and the multipath channel propaga-
tion model. Thanks to this side information, the number
of estimation parameters is signi�cantly reduced lead-
ing to a signi�cant performance improvement. This im-
provement is particularly important in the case of sparse
multipath channel where the standard SOS-based ap-
proaches provide poor estimation accuracy. In compar-
ison with the method presented in [11], our approach is
computationally simpler and more robust to noise and
�nite sample e�ects.
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