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ABSTRACT

The purpose of this communication is the formulation

of three new linear algorithms for blind non-minimum

phase MA system identi�cation. These methods have

been derived starting from new equations involving sys-

tem coe�cients and q-slices of the k�th order cumulant

sequence of the ouput MA system. In particular, these

new algorithms use only fourth-order cumulants, and

thus, are specially useful when the driving system noise

has symmetric probability density function and a pos-

sible additive Gaussian noisy process contaminates the

system ouput.

1 INTRODUCTION

In the last decade more and more attention has been

paid to the identi�cation of non-minimumphase (NMP)

systems using higher-order statistics. The methods de-

veloped are expected to �nd wide applications in di-

verse �elds, such as sonar, radar, blind equalization,

time-delay estimation, image and speech processing and

seismology [1] [2]. So far, several methods have been

proposed in the literature, among which linear algebra

solutions [1], [2],[3], [4], [5], [6], [7] have attracted great

interest due to their computational simplicity and be-

cause they provide good initial guesses to optimization-

based solutions.

This paper presents three linear approaches based on

a set of equations involving fourth-order output cumu-

lants and their parameters to identify a (possibly) NMP

linear system driven by a non-measurable independent

and identically distributed non-Gaussian sequence from

just only output measurements. Among the linear

algebra-based methods, a vast majority of the literature

exploits the third-order cumulants of the process in con-

junction with data autocorrelations and/or fourth-order

output cumulants [1], [2],[3], [4], [5], [6], and [7]. How-

ever, when the driving system noise has symmetric prob-

ability density funtion (pdf), its third-order cumulants

are zero and fourth-order cumulants have to be used.
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There are many symmetric pdf non-Gaussian distribu-

tions of interest in seismic signal processing and data

communications that have zero third-order cumulants

but non-zero fourth-order cumulants. The proposed lin-

ear algorithms have been designed to be applied in these

cases, and since they use only fourth-order cumulants, in

principle, they are not sensitive to any additive Gaussian

noise, regardless its power spectral density.

2 NEW CUMULANTS EQUATIONS

Consider the following �nite impulse response signal

model:

x(n) =

qX

i=0

b(i)w(n � i) b(0) := 1 (1)

where the observations of the signal y(n) are contami-

nated by additive Gaussian noise (y(n) = x(n) + v(n)).

The following assumptions are made in this paper:

� AS1) The driving noise sequence w(n) is an un-

observable, zero-mean, i.i.d. non-Gaussian process

with symmetric pdf and at least cumulants of or-

ders up to 2k �nite, k > 3.

� AS2) The additive noise v(n) is a i.i.d. zero-mean

Gaussian process (white or coloured), independent

of the input w(n) and hence of the output x(n).

� AS3) The LTI MA system is causal, possibly NMP,

with b(q) 6= 0 and b(0) = 1. The last condition �xes

the inherence scale ambiguity.

� AS4) The system order q is known. If it is not, it

may be estimated using a similar scheme to that

proposed in [8].

For the process (1), the Brillinger-Rosenblatt formula

relates the output cumulants of the FIR system driven

by non-Gaussian i.i.d. noise with its coe�cients. Based

on this formula, we are interested in looking for a rela-

tion between the q-slice of the fourth-order cumulants

sequence c4y(�1; �2; q) and system coe�cients. To ac-

complish that, we use the following result, which will be

proved in the Conference:



Proposition 1. Under the conditions AS1-AS3, the

following relations involving system coe�cients and the

(�2; �3; :::; q) and (�3; �4; :::; q) slices of the k-th order cu-

mulant sequence hold:

P
q

i=0 b
r(i)ck�m

ky
(�1 + i; �2; : : : ; q) =


k�m

kw

(k�m+r)w

bk�m(�2) : : : b
k�m(q)c(k�m+r)y(�1; �1=0; : : : ; �1=0)

(2)

P
q

i=0 b
r(i)ck�m

ky
(�1 + i; �1 + i; : : : ; q) =


k�m

kw

(2k�2m+r)w

bk�m(�3) : : : b
k�m(q)c(2k�2m+r)y(�1; �1=0; : : : ; �1=0)

(3)

for r = 1; : : : ; k � 1;m = 0; : : : ; k � 1, and r � m in

Eqn. 2, and for r = 1; : : : ; k � 1;m = 0; : : : ; k � 1, and

r + k � 2m in Eqn. 3, the argument of ck�m+ry or

c2k�2m+ry containing r-1 zeros.

Corollary 1. Under assumptions AS1-AS3, the follow-

ing relationships involving the (multidimensional) q-

slices of fourth-order ouput cumulants of MA(q) system

hold:
P

q

i=0 b(i)c
3
4y(�1 + i; �2; q) = 24w

b3(�2)b
3(q)c4y(�1; �1; �1)

(4)

qX

i=0

b2(i)c4y(� + i; � + i; q) = b(q)c4y(�; �; 0) (5)

P
q

i=0 b
2(i)c24y(�1 + i; �2; q) = 4w

b2(�2)b
2(q)c4y(�1; �1; 0)

(6)

qX

i=0

b3(i)c4y(�1 + i; �2; q) = b(�2)b(q)c4y(�1; 0; 0) (7)

3 ALGORITHMS DESCRIPTION

The equations derived en previous section have been

obtained after some manipulations from Proposition 1

with k=4. Based on the equations of the above Corol-

lary, three algorithms for MA parameter estimation are

proposed. These algorithms for the symmetric pdf case

can be summarized as follows:

Algorithm 1 (LS1). Consider equation (4). Using

the relations

c4y(0; �2; q) = 4wb(�2)b(q) (8)

and

4w =
c24y(0; 0; q)

c4y(0; q; q)
(9)

we get the set of equations

P
q

i=0 b(i)c
3
4y(�1 + i; �2; q) =

=
c
3
4y(0;�2;q)c4y(0;q;q)

c
2
4y(0;0;q)

c4y(�1; �1; �1)

(10)

Forming the system of equations that results for �1 =

�q; : : : ; 0; : : : ; q and �2 = 0; : : : ; q � 1 we obtain an

overdetermined system of equations with q + 1 un-

knowns (b(0); b(1); : : : ; b(q)). The least-squares solution

is then found and the model parameters are obtained as

(1;
b(1)

b(0)
; : : : ;

b(q)

b(0)
), provided that b(0) is near to the unity.

Algorithm 2 (LS2). Consider equation (5). Forming

the system of equations that results concatenating (5)

for � = �q; : : : ; q, we obtain 2q+ 1 equations with q+ 1

unknowns (b(q); b2(1); : : : ; b2(q)). Taking the square root

we obtain the absolute value of the MA coe�cients. To

elliminate the sign uncertainty we take the sign of the

coe�cients given by LS1.

Algorithm 3 (LS3). Another alternative for the cal-

culation of the MA model parameters is to solve the

equation (7). Using the fact

c4y(0; �2; q) = 4wb(�2)b(q); (11)

(7) can be rewritten as

qX

i=0

b3(i)c4y(�1 + i; �2; q) =
c4y(0; �2; q)

4w
c4y(�1; 0; 0)

(12)

If this equation is concatenated for �1 = �q; : : : ; q and

�2 = 0; : : : ; l1; (l1 < q); l1 being the last slice in the

fourth-order cumulant space used to estimate the para-

meters. In this case we have (2q + 1)(l1 + 1) equations

and (q + 1) unknowns ( 1
4w

; b3(1); : : : ; b3(q)) which can

be solved in the least-squares sense. Taking the cubic

root we obtain the system parameters.

The consistency (uniqueness) of the solution provided

by these algorithms is guaranteed since coe�cients ma-

trix in either case can be proved to be full rank.

4 NUMERICAL RESULTS

In this section we apply the algorithms described pre-

viously to the NMP MA system identi�cation prob-

lem from noisy output data. The driving system

noise is a i.i.d. Laplacian random process with the-

oretical kurtosis 4w = 12. The additive noise is

a coloured Gaussian process obtained by �ltering the

i.i.d. white Gaussian process through an ARMA sys-

tem with AR coe�cients [1;�2:2; 1:77;�0:52] and MA

coe�cients [1;�1:25]. The performance of the three

proposed algorithms is compared with the fourth-order

version of the reformulated Giannakis-Mendel-Tugnait

(GMT) method [2] [3]. Five hundred independent runs



were performed in this study. Several MA models were

tested, here we �rst show the results for the MA(5)

model [1;�2:33; 0:75;0:5; 0:3;�1:4] used in [6]. Tables

1, 2, 3, and 4 show the mean and variance of the es-

timated parameters when the SNR was set up to 5dB,

and Figures 1 and 2 plots the MSE of the estimated pa-

rameters over 500 realizations as a function of the SNR.

Several conclusions can be drawn from these results:

� The proposed LS1 algorithm outperforms all the

other methods in terms of bias, variance and MSE.

This behaviour may be explained by the fact that

the proposed algorithm makes use of more cumu-

lant statistics than the other proposed methods. In

addition, the goodness of the solution provided by

this algorithm can be tested by comparing the es-

timated b(0) with the unity, values far from it help

to discard the solution.

� Estimations given by the GMT method are clearly

biased since this method makes use of the signal

autocorrelation sequence a�ected by the coloured

gaussian noise.

� When the record of available data is short, the per-

formance of all algorithms degrade due to the high

variance in the cumulant estimates.

Finally, to corroborate these results, Tables 5 and 6, and

Figure 3 shows the same than in the previous example,

for the MA(2) process used in [1] [4], with parameters

[1, -2.0833, 1] in the same work conditions.

5 CONCLUSION

We have proposed three new algorithms for MA sys-

tem identi�cation based on the use of the system ouput

fourth-order cumulant sequence. The �rst proposed

method shows a good behaviour in terms of bias and

MSE. In the coloured Gaussian noise case, the improve-

ments of this algorithm over the GMT method justify

its use for MA modelling of random processes with sym-

metric probability density function. A brief study of the

inuence of noise level and number of data has been pre-

sented in order to corroborate this conclusion.
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Coe�cients LS1 LS2 LS3 GMT

-2.330 -2.280 -1.185 -1.140 -0.602

0.750 0.749 0.567 0.521 0.468

0.500 0.510 0.408 0.375 0.314

0.300 0.279 0.060 0.047 0.209

-1.400 -1.438 -0.870 -0.834 -0.563

MSE 0.029 0.268 0.276 0.424

Table 3: Estimated parameters (mean) for the process

MA(5) contaminated by 5dB of coloured noise (N =

16384 and 500 Montecarlo runs).

Coe�cients LS1 LS2 LS3 GMT

-2.330 0.355 0.666 0.611 0.189

0.750 0.165 0.287 0.244 0.120

0.500 0.163 0.174 0.157 0.149

0.300 0.144 0.438 0.424 0.178

-1.400 0.251 0.241 0.237 0.169

MSE 0.029 0.294 0.268 0.086

Table 4: Standard deviation from the estimated para-

meters for the process MA(5) contaminated by 5dB of

coloured noise (N = 16384 and 500 Montecarlo runs).

Coe�cients LS1 LS2 LS3 GMT

-2.0833 -2.209 -1.497 -1.324 -0.406

1.000 1.037 0.889 0.802 0.577

Standard

deviation
LS1 LS2 LS3 GMT

-2.0833 0.624 1.200 0.971 0.079

1.000 0.319 0.508 0.372 0.089

MSE 0.08 0.32 0.26 0.47

Table 5: Estimated parameters (mean and standard de-

viation) for the process MA(2) contaminated by 5dB of

coloured noise (N = 8192 and 500 Montecarlo runs).

Coe�cients LS1 LS2 LS3 GMT

-2.0833 -2.116 -1.844 -1.680 -0.410

1.000 0.990 0.922 0.877 0.567

Standard

deviation
LS1 LS2 LS3 GMT

-2.0833 0.248 0.735 0.618 0.056

1.000 0.145 0.384 0.301 0.073

MSE 0.01 0.11 0.10 0.47

Table 6: Estimated parameters (mean and standard de-

viation) for the process MA(2) contaminated by 5dB of

coloured noise (N = 16384 and 500 Montecarlo runs).
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Figure 1: MSE as a function of the SNR for a the MA(5)

model (N = 16384 and coloured noise).
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Figure 2: MSE as a function of the SNR for a the MA(5)

model (N = 8192 and coloured noise).
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Figure 3: MSE as a function of the SNR for a the MA(2)

model (N = 16384 and coloured noise).


