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ABSTRACT

The need for decomposing a signal into its optimal represen-

tation arises in many applications. In such applications, one

can usually represent the signal as a combination of an over-

complete dictionary elements. The non-uniqueness of signal

representation, in such dictionaries, provides us with the op-

portunity to adapt the signal representation to the signal.

The adaptation is based on sparsity, resolution and stability

of the signal representation. In this paper, we propose an al-

gebraic approach for identifying the sparsest representation

of a given signal in terms of a given over-complete dictionary.

Unlike other current techniques, our approach is guaranteed

to �nd the solution, given that certain conditions apply. We

explain these conditions.

1 Introduction

In many applications one needs to identify the sparsest rep-

resentation of the given signal in terms of the elements of

an overcomplete set of vectors or signals. Such applications

include signal coding for compression, chemical analysis of

compounds and direction �nding. In signal coding for exam-

ple, certain parts of the signal might be most compactly rep-

resented by certain types of known dictionaries while other

parts might need other dictionaries. For example in audio

coding, there are tonal parts which are best represented by

Fourier dictionaries, and there are edges which are best rep-

resented by wavelets. Some other parts might be represented

by some other dictionary. If we form a large dictionary that

contains all these dictionaries, and choose the sparsest rep-

resentation of the signal in terms of the elements of this

overcomplete dictionary, we will achieve a higher compres-

sion rate. In direction of arrival estimation, we have an array

of sensors which has a certain response of a unit strength sig-

nal for each arrival angle. If we form a matrix containing all

these responses for all possible arrival angles, we can obtain

an estimate for the arrival angles. Another application for

such a problem, is when we have several actuators with each

of them producing a certain signal, and we are trying to �t a

received signal to the minimum possible number of actuator

signals. This has been used for example in neuroimaging.

This problem is referred to in the literature as the \subset

selection problem". Other examples of such are the decom-

position of signals using over-complete dictionaries such as

wavelets, wave packets, cosine packets etc.. In this paper we

will present an algebraic approach for solving this problem.

Notice that, while in the case of, for example, lossless

compression of signals, we have an exact representation of

the signal in terms of the dictionary, there are cases where

this does not apply. If the model representing the signal has

discrepancies, or noise added to it, then we have what we

call \stochastic subset selection", where the signal cannot be

represented exactly in terms of the dictionary elements, but

rather we try to �nd the best sparse representation such as

to minimize a certain cost function in the di�erence between

this representation and the signal. Notice that this can be

used in blind equalization of communication channels [1].

Several algorithms for solving the subset selection problem

have been proposed in the literature [2][3][4][5][6][7]. But,

as the problem is NP-complete [9], none of these methods

always �nds the true global solution. Subset Selection al-

gorithms use several optimization criteria. We shall present

a brief description of several of these methods in the next

section. Our algebraic technique attempts to solve the prob-

lem through generating other vectors that span the space of

the solution. Our technique is gauaranteed to reach the true

global solution if certain conditions apply. These conditions

might be on the size of the overcomplete dictionary, or they

might be on the structure of the dictionary as will be ex-

plained later. This summary will be organized as follows:

in the next section we formally explain the subset selection

problem, and we give a brief description of the current avail-

able techniques to arrive at the sparsest solution. In section

3 we present our technique, explaining the condition in which

it will apply. In section 4 we give some simulation results,

and then we end with the conclusion.

2 Subset Selection Problem

The subset selection problem may be described as follows in

a �nite dimensional space. We have N discrete waveforms
~�i; 1 � i � N . Each of these waveforms is a vector of size

M � 1 with its energy normalized to unity. These wave-

forms are collected in a M � N matrix �. Each column

of � therefore represents a particular waveform. The sig-

nal to be analyzed, ~s, is a vector of size M � 1. The signal

decomposition problem is then equivalent to solving

�~� = ~s: (1)

If the dictionary forms a basis (M = N and all the wave-

forms are independent), then there is a unique solution given

by ~� = �
�1
~s. Further, if the waveforms are mutually or-



thonormal (orthonormal transform), then ��1 = �
T , and

computing the decomposition is simple.

However, in over-complete dictionaries, we have N > M

(usually N � M). In such cases, we do not have a unique

solution. In other words, we may represent the signal ~s using

the waveforms in the dictionary � in in�nitely many ways.

Given anyM independent columns from�, we may uniquely

determine the decomposition. However, there may exist a

better or more sparse signal representation. The problem

therefore is to �nd the \optimal" representation of the signal

with as few elements from the dictionary as possible, i.e.,

with the maximal number of zero components. This problem

has been proven to be NP-complete [9].

Currently, there are several methods which attempt to

solve this problem. The Method of Frames (MOF) [3] picks

the solution that has the minimum l2 norm of ~�. MOF thus

selects the solution that is closest to the origin. However, the

MOF is not sparsity preserving. Even if the signal has an

underlying sparse representation in terms of the elements of

the dictionary, the MOF representation is usually very dense.

Thus MOF representation unnecessarily uses many elements

(sometimes much more than M) for signal representation.

The Matching Pursuit (MP) algorithm [4] is an iterative

algorithm that picks the element that best correlates with

the present residual. This algorithm is greedy and myopic,

and in certain cases it chooses the wrong elements in the �rst

few iterations and further iterations are used in correcting

the initial mistakes. Several examples have been reported

where MP performs very poorly [2].

The Best Orthogonal Basis (BOB) [7] method designed for

wavelet packets and cosine packets, picks a single orthogonal

basis out of all possible orthogonal bases in the dictionary

based on the minimum entropy criterion. This algorithm is

fast and delivers near optimal sparsity if the columns of� are

near-orthogonal. But for highly non-orthogonal elements in

�, this algorithm often fails. Further, this method applies

to certain structured dictionaries only.

The Basis Pursuit (BP) [2] minimizes the l1 norm of the

solution vector ~� by converting the decomposition problem

to a linear programming problem. The advantages of such

solution are that linear programming gives the global so-

lution instead of a local one, and such a solution is usually

sparse but not necessarily so. However, the complexity of lin-

ear programming is much higher than the other techniques.

The numerical implementation used in [2] to reduce this com-

plexity does not always guarantee a solution. For non-exact

representation, this method requires quadratic programming

[2].

An iterative technique we proposed in [6] divides the dic-

tionary into two sets: the \active" set consisting of the dictio-

nary elements that would be used to describe the signal and

the \inactive" set consisting of the rest of the elements. In

each iteration, the procedure swaps a single vector between

the \active" and \inactive" sets. This swapping is such that

the elements in the current signal representation correspond-

ing to the \inactive" set are smaller than those corresponding

to the \active" set. Although this technique has the exi-

bility of choosing the starting point, and hence by starting

from the end point of any of the other algorithms and by

iterating on that, this algorithm is guaranteed to give a bet-

ter solution 1, like the other techniques, this method may

converge to local minima of the norm of the error between

the signal and its approximation.

Several other suboptimal approaches have been developed

for optimal subset selection for use in least squares regres-

sion in Statistics. They include backward elimination and

sequential replacement [10].

A true global optimization technique is to use brute force

search to search through all linearly independent subsets of

a given size from the dictionary and decompose the signal

in each such basis. A numerical measure may be applied to

select the \optimality" criterion. This is an NP-complete

problem, with complexity increasing combinatorially with

the size of dictionary. Global optimization is, therefore, com-

putationally prohibitive.

3 Proposed Technique

The technique that we are proposing is an exact technique

in the sense that, under certain conditions on the dictio-

nary, or equivalently on the matrix �, it will �nd the true

optimal solution. This technique relies on being able to de-

rive, from the given signal vector ~s, several other vectors

that all lie in the same minimal subspace as ~s. If we were

able to derive a number of these vectors equal to the dimen-

sion of the subspace, then we can identify the columns of

the matrix � corresponding to non-zero elements in ~� as we

will shortly see. We will also show that for certain kinds of

matrices, among which are Vandermonde matrices, we can

easily generate these vectors whatever the size of the matrix

� is. For general matrices � however, this can only be done

given certain conditions on the size of the matrix. We will

derive these conditions. To explain our technique, we will

�rst present an example using a Vandermonde matrix, then

explain how this technique can be generalized. Assume that

we have the following equation
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Assume also that only three �k of ~� are non-zero. De�ne

three new signals ~s1, ~s2 and ~s3 as
�
s1 s2 s3 s4

�T
,�

s2 s3 s4 s5

�T
, and

�
s3 s4 s5 s6

�T
respec-

tively. We can write the above equation as
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where �i = ai � �i, i = ai
2
� �i. Note that �k and k are

non-zero only if �k is non-zero. Therefore the matrix on the

1
In the worst case, it won't improve the solution any further



right hand side is a full representation of the subspace which

the vectors corresponding to non-zero �'s form. We form the

left null space matrix of the right hand side matrix, and mul-

tiply this null space matrix by the matrix �. If the matrix

composed of the coe�cients is full rank, we will get zeros in

the columns corresponding to the non-zero coe�cients, and

hence we can easily identify them.

In the general case, let us assume that we have a maximum

of q non-zero components in the vector ~�, and assume there

exists p > q such that we can �nd matrices  i of size p �N ,

a diagonal matrix Di of size M �M and W of size p �M ,

such that

 i� =WDi: (4)

Notice that this equation is equivalent to

 i~s =WDi~�; (5)

for all ~s and corresponding ~� vectors.

Given the positions of the non-zero elements of � we can

write

 i~s = W
0

c
0

i: (6)

If we can �nd k such matrices, where k � q, then

�
 1~s  2~s : :  k~s

�
=W

0 �
c
0

1 c
0

2 : : c
0

k

�
:

(7)

Now, the rank of the left hand side matrix cannot be larger

than q. Since p > q, therefore a left null space matrix exists.

Call it wT . Assuming that
�
c
0

1 c
0

2 : : c
0

k

�
is full rank,

i.e. of rank q, then

w
T
W

0

= 0: (8)

Therefore by multiplying wT by the matrix W , we can iden-

tify the columns corresponding to non-zero components, and

we are done.

The problem now is to �nd the matrices  i, Di and W .

We notice that equation 4 can be written as

(�
T

 Ip)vec( i) = vec(WDi): (9)

Or
2
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:

:

wM

3
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2
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di1

di2

:

:
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3
7775

3
777775
= 0;

(10)

where wi is the ith column of W , and dil is the lth diagonal

element of Di. Let us right the above equation as

R� = 0: (11)

R has size Mp � (Np +M). To �nd a solution to the pre-

vious equation, R has to be of de�cient row rank. As we

showed before, this works for any size Vandermonde matrix,

and there might be other special matrices where this can

work, especially highly structured matrices such as Toeplitz

or Hankel matrices. We will investigate this matter further.

But for general matrices with no structure a su�cient con-

dition would hence be

Mp < Np+M; (12)

or

p <
M

M �N
: (13)

Obviously, this would be useful if M is close to N , but if M

is larger than 2N , this technique wouldn't work for general

matrices. Fig. 1 shows how p changes with M

N
. Notice

that the maximum number of non-zero elements that can be

found using this technique for general matrices has to be less

than p. Say q = p� 1. We have to �nd at least q solutions

to 11. Therefore the condition on the number of non-zero

elements is

Nq +N �Mq >= q; (14)

or

q <=
N

M �N + 1
: (15)

Therefore for a minimum of 2 non-zero elements, M can-

not be bigger than 1:5 �N for the limit as N !1, and less

than that for smaller N . Fig. 2 shows the maximum ratio

between M and N vs N , the length of the vectors in the

dictionary.

3.1 Simulation Results

Here, we present simulation results to the \stochastic subset

selection" problem, were we assume some noise ( or model

inaccuracies ) to be added. Therefore the problem can be

written as

�~�+ noise = ~s: (16)

We start by an example on a random Vandermonde ma-

trix. A Vandermonde matrix of size 6x12 was generated

whose vectors have unit norm. This matrix was multiplied

by a vector which has only 2 non-zero elements in random

places. White Gaussian noise was added to the resultant

vector. Notice that we have 2 options here, either use a

p = 4 and generate 3 ~ i's or use p = 3 and and generate 4
~ i's. Since we have noise added, we will choose the columns

corresponding to the least norm of wT
W . We ran several

simulations and compared the probability of error using the

2 values of p, and the results are shown in Fig. 3. We did

the same for a random 10x12 matrix. We also used p = 3

and p = 4. The results are shown in Fig. 4.

4 Conclusion

In this paper we presented a new algebraic technique for

solving the subset selection problem. We have shown cases

were our technique is guaranteed of �nding the global solu-

tion. We have shown that for special types of matrices, from

which we were able to identify the Vandermonde matrix, the

technique works.

We are currently investigating other types of matrices for

which the proposed technique will work, and also how our

algorithm behaves if two representations of the signal vector

yield the same sparsity.
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Figure 3: Probability of not �nding the correct vectors

at various noise standard deviations for 2 values of p for

a Vandermonde matrix
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