FRISCH FILTERING OF NOISY SIGNALS
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ABSTRACT

The Frisch scheme, that considers additive independent noises
on the measures of the input and output of a process, has re-
cently led to the development of specific identification proce-
dures. The obtained models, that have already been used to
implement smoothing procedures congruent with the scheme,
are here used to develop a filtering algorithm.

1 INTRODUCTION

The Frisch scheme was originally introduced by Ragnar
Frisch [1] as a conceptual tool to describe the problem of es-
timating linear relations from data affected by additive noise.
Differently from most common schemes, it leads, in the al-
gebraic case, to a whole family of models compatible with
the noisy data. The extension to the dynamical case has been
performed in recent years [2] and it has been shown that,
differently from the algebraic case, it is possible to obtain
a single model of the process. This is true, however, only
when the assumptions behind the scheme are exactly fulfilled
and this never happens in the real world; the application to
real (MISO) processes requires thus the introduction of suit-
able cost functions [3]. The extension to the multivariable
case faces also congruence problems and has been performed
even more recently [4].

Dynamic Frisch models describe also the covariance ma-
trices of the additive noises; this information can be used to
design a Kalman filter for the optimal estimation of the state or
of the output of the process. Frisch identification and Kalman
filtering can thus constitute an alternative to the simultaneous
estimation of the parameters of amodel and ofits state through
extended Kalman filtering [5] [6], that requires the a priori
knowledge of the covariance matrices of the noises on the
state and on the output.

The decomposition of the input/output sequences of a pro-
cess into orthogonal noiseless and noise parts at the basis of
the Frisch scheme has also been the basis of a smoothing pro-
cedure that allows the separation of the noiseless part of a
sequence (constituted by a regular behaviour) from the addi-
tive noise [7]. This result is thus similar to that obtained by
Roorda [8], and Roorda and Heij [9]. These decompositions
as well as the ways leading to their determination are, how-
ever, based on different approaches; Roorda and Heij min-

imize a quadratic function of the deviation of the observed
behaviour from its regular part while the solution considered
in [7] introduces the additional requirement of the compati-
bility of the regular part with a Frisch model. In both cases
the concept of behaviour, introduced by Willems [10], and
errors—in—variables models play central roles.

This paper extends the smoothing procedure described in
[7] to filtering by developing an on-line procedure that re-
quires, at every step, only an update of preceding computa-
tions. v

The content is organized as follows. Section 2 recalls the
context of the Frisch scheme and defines Frisch smoothing
and filtering. Section 3 describes the solution of the smooth-
ing problem while Section 4 develops the filtering algorithm.
A numerical example compares, in Section 5, Kalman fil-
tering with Frisch smoothing and filtering. Some future de-
velopments are described in Section 6 and short concluding
remarks are finally reported in Section 7.

2 STATEMENT OF THE PROBLEM

The observed process can be described, in the context of the
Frisch scheme, by a state—space model of the type
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where £ € R", € R™, 4 € R" and y and # are independent
white processes with unknown covariance matrices Q and R
that are assumed diagonal (the noises on the input and output
components are considered as mutually independent). Model
(1)~(4) can be easily rewritten in a form suitable for Kalman
filtering as

Ft¢+1) = AX(t)+Bu@®) —Bu@) (5)
y@) = Cx@)+ y@). (6)

As described in [11], equations (1) and (2) define, under
the assumption of complete observability, a canonical MFD
model
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where z denotes the unitary advance operator. Limiting the
considerations which follow to MISO systems, model (7) can
be written as
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If L denotes the length of the available sequences, itis possible
to define the Hankel matrices
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the matrix of input/output samples
Xi = [ X1 (0) Xelwr) - Xi(ur) ] (11

where k+ N < L, N > (r + 1)k, and the sample covariance
matrices Xk given by
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the components of #(?) and y(t), the assumptions behind the
Frisch scheme lead, when N — 00, tothe following relations

Xe=Re+ X Te=Si+ i (13)

where

= R 0 .
Y= \:0 Q:\ = diag [G)',Ik+1, Uﬁllk, e, Uﬁrlk]- (14)

The identification problem, in the context of the Frisch
scheme, consists in determining the order and the parame-
ters of model (8), or of any equivalent state-space model,
and the covariance matrix of the noises (14) on the basis of
the knowledge of the noisy sequences u(-), y(-) or, equiva-
lently, of the sequence of increasing—dimension matrices p2y”
fork = 1,2, ... The solution of this problem can be obtained
by minimizing a suitable cost function (given, for instance,
by the whiteness or by the variance of the innovations of the
Kalman filter associated with the model) on the convex thy-
per)surface describing, in the noise space, the whole family
of admissible solutions [2], [3].

The context of the Frisch scheme allows defining the tollow-

ing practically relevant problems.

Problem 1: Frisch smoothing. Given a sequence of noise~
corrupted input—output sequences u (), y(-) satisfying the as-
sumptions of the Frisch scheme and the process model, extract
the noiseless sequences #(-), Y(-).

Remark 1. The noiseless sequences #(-), y(-) obtained in the
solution of Problem 1 constitute the regular part of the data
i.e. a regular behaviour compatible with the process model.

Problem 2: Frisch filtering. Given an increasing sequence
of noisy samples (1), y(1), ..., u(®), y(t), estimate, as any
new sample becomes available, the regular part u(t), ().

3 FRISCH SMOOTHING

Consider the parameters of model (8) arranged into the vector

T
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(15)
because of relation (8), it follows that
X,6=0 (16)
so that
X, 0 =X,0. an

Equations (16) and (17) describe essentially the time shift
invariance of the regular part of the data; some editing on
equation (16) allows to obtain the equivalent form

Mpv=0 (18)
where
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Relation (17) can thus be rewritten in the equivalent form
Myv =y (21)

where 7 is a vector of noise samples with the same structure
as 0 and y = Mpv. Because of the structure of the (N x (r +
1)(N + n) — r) matrix Mp, 7 cannot be univocally deduced




from relation (21); the only solution of practical interest, i.e.
that minimizing the Euclidean norm of v, is given by

=M}y (22)

where Mf,+ denotes the pseudoinverse of My. Relation (22)
allows, for a given model, to extract the compatible regular
part of the data which minimizes the sum of the squares of
the errors # and y.

4 FRISCH FILTERING

The samples #(t), y(t) obtained by Frisch smoothing will
depend, in general, on both previous and subsequent noisy
samples u(-) and y(-); the only exception concerns the first
sample 4(1), $(1), that will depend only on subsequent sam-
ples and the last one a(z), y(z), that will depend only on
previous samples.

Relation (22) could thus be used in filtering applications
by performing at every step a smoothing and selecting in the
whole sequence #(-), $(-) only the last sample. A procedure
of this kind would however be non efficient because it does
not rely on previous computations; moreover the amount of
computations increases at every step with the dimension of
M,. Tt is however possible to take advantage of the specific
structure of My to develop an on-line procedure; rewrite, to
this purpose, Mp (19) and 0 (20) as follows
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where the argument N denotes the number of relations de-
scribed by (18) i.e. the number of rows of M. Passing from
NtoN+1(e fromt =N+ntot =N +n+1),the
update of v and Mj is given by
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The pseudoinverse of Mg(N + 1) is thus given by
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Applying a well-known matrix inversion lemma to expression
(27) we obtain
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where the scalar « is given by
a=1/[mim! +mam] —my MF(N)Mo(NYm] ]. (29)

Expressions (28) and (29) can be used to perform an efficient
on-line update of M;’ and thus to obtain updated values of v,
ie. of &(z), y(r), a(r) and y(¢).

Remark 2. The actual on-line implementation of (28)—(29)
and (22) can take advantage of the peculiar structure of My
and of the necessity to compute, at every step, only the last
r + 1 entries of v.

Remark 3. The filtered values #(z), y(¢) obtained in the
sequence of filtering steps does not constitute a smoothing of
the available data and a regular behaviour since they derive
from data sets of different length.

5 A NUMERICAL EXAMPLE

The example which follows refers to a dynamical system with
order 2, poles given by p1 2 = —0.3 £ 0.6/ and to the same
data set used in [7]. The input sequence is a PRBS with stan-
dard deviation equal to 1 and also the standard deviation of
the corresponding output sequence is unitary. Sequences of
Gaussian noises with standard deviations equal to 1.2 and 0.8
have been added to the input/output sequences; the amount of
additive noise on the input measures is thus equal to 120% (in
amplitude) while the noise on the output reaches an 80% level.
A model of the process has then been estimated, in the context
of the Frisch scheme, by means of the identification proce-
dure described in [3]. Figure 1 compares the noiseless output
sequence (continuous line) with the output of a Kalman filter
designed using the true model and the true noise variances;
the standard deviation of the error is 0.665.
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Figure 1 — Noiseless output versus Kalman filtering
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Figure 2 compares the noiseless output sequence with the
results of Frisch smoothing using the identified model; the
standard deviation of the error is 0.638, (slightly) better than
that obtained with Kalman filtering.

0 1.0 2‘0 310 4‘0 Sb 6.0 70 80 Samples
Figure 2 - Noiseless output versus Frisch smoothing

Figure 3 reports the noiseless output (continuous line) and the
results of Frisch filtering performed using relations (28) and
(29); the standard deviation of the error is 0.639, only slightly
worse than the value obtained performing a smoothing on the
whole set of data and still better than the value obtained with
Kalman filtering.
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Figure 3 — Noiseless output versus Frisch filtering

6 EXTENSIONS OF FRISCH FILTERING

The filtering technique proposed in this paper is an extension
of the smoothing procedure described in [7] and relies on an
increasing horizon which is not strictly necessary neither in
smoothing nor in filtering. This aspect of the problem can be
easily realized observing Figure 4 which shows the entries of
a part of Mp; it is evident how, for every practical purpose,
only alimited number of samples before and after aconsidered
instant of time affects smoothed values.

Figure 4 — Entries of (a part of) M, (100)

These considerations are at the basis of the current devel-
opment of FFF (Fast Frisch Filtering) algorithms that could
conjugate high computational efficiencies with the same per-
formance of extended horizon algorithms.

7 CONCLUDING REMARKS

This paper has described the extension to filtering of a previ-
ous smoothing procedure based on the Frisch scheme. The
results compare well with both Kalman filtering and Frisch
smoothing. '

Future developments concern on one side the extension to
the multivariable case and, on the other, the development of
a new Fast Frisch Filtering algorithm that should exhibit the
same properties of the algorithm described here and a very
efficient numerical implementation.
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