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ABSTRACT

This paper deals with the problem of quadratic min-
imization subject to linear equality constraints. Con-
trary to the standard formulation, we assume the most
general case of a possibly singular quadratic form. As
we explain, the existing formal solution to this problem
has several drawbacks. Our new approach is free from
most of these drawbacks. It has a simple physical inter-
pretation and is relatively easy to implement. Practical
importance of this result lies in its numerous applica-
tions : �lter design, spectral analysis, direction �nding
and blind deconvolution of multiple FIR channels. Here
we focus on the blind deconvolution application.

General context

The linearly constrained quadratic optimization prob-
lem has been usually addressed in the case of strictly
positive quadratic forms. The particular case of a regu-

lar quadratic form leads to a simple solution. However,
in some applications the quadratic form to be minimized
may be singular. A formal solution to such a generalized
linearly constrained quadratic minimization problem is
also available [1, 2]. The authors of [3] discuss the appli-
cation of this result in signal processing with particular
emphasis to the �lter design problem. However, the ex-
isting solution in the general singular case su�ers from
a number of important drawbacks. As explained in the
following section, this solution assumes knowledge of the
rank of a certain matrix. Imprecise knowledge of that
rank may lead to a hard failure. Additionally, the im-
plementation of the existing solution is computationally
burdensome in certain applications.

In this paper, we describe the entire set of solutions
to the stated problem and prove that the known result
of [1] yields the particular minimum norm solution. We
also develop a new form of the latter solution. Con-
trary to the existing solution, the new method does not
require any rank information and is also easy to imple-
ment. In addition, the new method has a clear interpre-
tation : it may be obtained as a regularized version of
the classical solution to the regular case. We prove that
this method converges to the existing solution in the sin-

gular case as the regularization factor vanishes. Based
on this property, we recommend the use of a very small
regularization factor : this is in e�ect a main feature of
our approach which distinguishes it from the standard
regularization method.

Background

We consider the following optimization problem :

min
F2F

FHRF; F = fF 2 CM�m : FH � = Cg: (1)

Here the superscript (H ) denotes the conjugate trans-
pose, R is an M �M Hermitian matrix, � and C are
M�n and m�n matrices respectively withm < M and
n < M . In words, one needs to �nd anM�m minimizer
of the quadratic form FHRF subject to a set of n linear
constraints FH� = C. Recall that minimizing FHRF

w.r.t. F 2 F means �nding some F 0 2 F such that
(FHRF � F 0

H
RF 0) is a non-negative de�nite m �m

matrix for all F 2 F . We assume that R is non-negative
de�nite, i.e., R � 0, and that the matrix � is full-rank.
The existence of solutions to (1) is guaranteed by the
fact that R � 0, which ensures that FHRF � 0, and
the full-rank property of � which ensures that F is not
empty or equivalently, that FH� = C holds for some F .
In some applications,Rmay be assumed to be strictly

positive de�nite and well-conditioned. In such regular
cases, problem (1) has a unique solution derived in [4] :

Fo = R�1�
�
�H R�1�

��1
CH ;

FHo RFo =
�
�H R�1�

��1
: (2)

In other applications, however, the matrix R is ill-
conditioned or even exactly singular. For this general
case, a particular minimizer of (1) presented in [1, 2] is
given by :

FP = [R+�P�H ]#�
�
�H [R+ �P�H ]#�

��1
CH ;

FHP RFP = C
h�
�H [R+��H ]#�

��1 � In

i
CH ; (3)

where P is an arbitrary n � n positive de�nite matrix,
In is n � n identity matrix and the superscript (#) de-
notes the Moore-Penrose pseudo-inverse. The essential



di�erence from (2) consists of replacing the inverse of R
by the pseudo-inverse of (R + �P �H ). The compu-
tation of this pseudo-inverse requires the knowledge of
rank( R + �P �H ) which is often unavailable. More-
over, the reliable computation of the pseudo-inverse in
(3) from the available (empirical) quantities is compli-
cated whenever the matricesR and � are ill-conditioned.
An example of such a situation is the �lter design prob-
lem addressed in [3]. Clearly rank estimation errors may
lead to a hard failure of (3). Hence the direct imple-
mentation of this solution is not recommended in many
realistic environments.
Another shortcoming of (3) comes from the necessity

to calculate the pseudo-inverse of a singular M � M

matrix instead of a simple inverse as in (2). The burden
of this operation grows with increasing M . In high-
resolution spectral analysis, for example as applied to
large aperture radars, the use of (3) may pose serious
complexity problems.
The aforementioned drawbacks of (3) motivated us to

study the problem (1) in details, with the aim to �nd
simpler solutions. In the following section we describe
the whole set of solutions to (1) in the most general case.
The main practical outcome of this work is a computa-
tionally e�cient alternative to (3) which is free of the
above mentioned drawbacks.

Main results

We �rst indicate that the most general condition ensur-
ing the existence of solutions to (1) is given by:

R � 0; rank( � ) = rank( [�T ; CT ]T ): (4)

Note that rank( � ) � rank( [�T ; CT ]T ) � n so that
the full-rank property of �, i.e., rank( � ) = n, is a
su�cient condition for the right-hand equality in (4).
Next, we establish the set of solutions to our problem.

Theorem 1 Assume that (4) is veri�ed. Then the en-

tire set of solutions to (1) is given by fFV g :

FV = [R+��H ]#�
�
�H [R+��H ]#�

�
#CH + V;

FHV RFV = C
��
�H [R+ ��H ]#�

�
# ��#�

�
CH

where V is any M �m matrix such that spanf V g �
nullf R +��H g.
This statement means, in particular, that the solution
FP , which corresponds to FV with V = 0, is invariant
to the choice of P , i.e., it always coincides with

F? = [R+��H ]#�
�
�H [R+ ��H ]#�

�
#CH : (5)

It is worth mentioning that F? is a minimum norm solu-
tion to (1) since it is a particular case of FV with V = 0.
From a practical standpoint, the direct calculation of

F? inherits all the drawbacks of (3) discussed in the pre-
vious section. An e�cient alternative implementation of
(5) is possible due to the following result.

Theorem 2 De�ne the family fF�g with scalar � > 0
according to

F�
4

= [R+ �IM ]�1�
�
�H [R+ � IM ]�1�+ �In

��1
CH :

Then F� and FH� RF� are continuous functions of � on

(0; 1) and

lim
�!0

F� = F?; (6)

lim
�!0

FH� RF� = C
��
�H [R+ ��H ]#�

�
# ��#�

�
CH :

In words, one can arbitrarily approach the solution to
(1) in the most general case by setting � su�ciently
small. Moreover, F� may be regarded as a `slightly reg-
ularized' version of the classical result (2). Indeed, a
positive de�nite matrixR in (2) is replaced by (R+� IM )
in the case of a possibly singular R.

Application to blind multichannel deconvolution

Later in the paper, we focus on the blind deconvolution
of multiple FIR channels. We �rst recall the principle
of the ad-hoc linear prediction method [5]. Based on the
results of the previous section, we derive a new estimator
which yields deterministic deconvolution if the model
order is known and remains consistent when the order
is over-estimated.
Consider the standard setup of blind identi�cation of

multiple FIR �lters :

x(t) =

LX
�=0

h(� ) s(t � � ) + e(t); t 2 ZZ: (7)

In the absence of noise fe (t)g
t2ZZ, fx (t)gt2ZZ stands for

the q-variate series observed at the output of a linear sys-
tem described by the q� 1 impulse response fh(� )gL�=0
and excited by the scalar stationary series fs (t)g

t2ZZ
.

Our task is the identi�cation of system parameters
h(0); : : : ;h(L), up to a non-essential scale factor, from
a number T of consecutive samples of fx (t)g

t2ZZ. An
important condition of this setup is that the order L of
the system is unknown. A model order L0 is then cho-
sen so that L0 � L. De�ne h(z) =

PL

�=0 h(� ) z
�� , the

transfer function of the system. To ensure the global
identi�ability of h(z) from the second order statistics of
fx (t)g

t2ZZ, we assume that h(z) 6= 0 for any z 2 C,
and that fs (t)g

t2ZZ
is a zero-mean unit-variance white

noise. Under these hypotheses, the authors of [5] showed
that in the absence of noise, fx (t)g

t2ZZ
is also a �nite-

order AR series, i.e., there exists N and q � q matrices
A(1); : : : ;A(N ) such that

x(t) +

NX
�=1

A(� )x(t� � ) = h(0) s(t); t 2 ZZ; (8)

and fh(0) s (t)g
t2ZZ

is the innovation of fx (t)g
t2ZZ

. An

important fact is that A
4

= [A(1); : : : ;A(N )] satis-
fying (8) is not unique. Additionally, note that the



innovation series has a singular covariance matrix :
D = IE

�
h(0) s(t) s(t)H h(0)H

	
= h(0)h(0)H . In fact,

A and D satisfy the generalized Yule-Walker equation :

[Iq; A] Rx = [D; 0q�qN ]; Rx = IEfx(t)x(t)H g (9)

where x(t) = [x(t)T ; : : : ; x(t � N )T ]T . Hence con-

sistent estimates Â and D̂ of a particular A (usu-
ally minimum norm solution to (9)) and D may be

obtained from the empirical covariance matrix R̂x =
(T � N )�1

PT

t=N+1 x(t)x(t)
H , see [5, 6]. An estimate

of h(0) up to a scaling factor can be calculated using the
fact that D = h(0)h(0)H . Let û be the q� 1 eigenvec-
tor corresponding to the dominant eigenvalue of D̂ such
that kûk2 is equal to this dominant eigenvalue. Since
rank( D ) = 1, we should have û ûH � D̂. It was shown
(see [6]), that in the noiseless case

û = �̂h(0); and D̂ = j�̂j2D (10)

holds for any T > N + L, where j�̂j p! 1 as T ! 1,
while the argument of �̂ is unde�ned.
As shown in [5], the Â and û yield an estimate of the

parameters h(0); : : : ;h(L) up to a multiplicative scalar.
The main drawback of the ad-hoc approach proposed in
[5] is a poor estimation accuracy even in the absence of
noise unless T is large.
A statistical approach to estimating h(0); : : : ;h(L),

derived in this paper, consists of �tting a suitable func-
tion of these parameters to the estimates Â and û. Us-
ing (7) rewritten in a compact operator form as x(t) =
[h(z)] s(t), and a similar operator form for its autore-
gressive counterpart (8), we �nd :

[A(z)]x(t) = h(0) s(t) ) A(z) h(z) = h(0);

where A(z) = Iq +
PN

�=1A(� ) z�� . The last equation
implies, for any order L0 � L, that :

TL0(A)h = [h(0)T ; 01�q(N+L0)]; (11)

where TL0(A) is a block Toeplitz matrix with (N+L0+1)
vertical and (L0+1) horizontal blocks, the �rst block col-
umn [Iq;A(1)T ; : : : ;A(N )T ; 0 : : :0] and the �rst block
row [Iq; 0 : : :0] and h = [h(0)T ; : : : ;h(L)T ; 01�q(L0�L)].
Our model �tting approach consists of minimizing the

residual of this equation w.r.t. the set of parameters in
h after replacing TL0(A) and [h(0)T ; 01�q(N+L0)]

T by

TL0(Â) and [ûT ; 01�q(N+L0)]
T , respectively. More ex-

actly, we consider the minimization problem

ĥW = argmin
#
k TL0(Â)#� [ûT ; 01�q(N+L0)]

T kW ; (12)

where # is a q(L0 +1)� 1 dummy vector of parameters,
W is a q(N+L0+1)�q(N+L0+1) non-negative de�nite

weighting matrix and kvk2
W

4

= vH W v. Assuming that
the inverse matrix below exists, the solution to (12) is

ĥW =
�
TL0(Â)H W TL0(Â)

��1
�

� TL0(Â)H W [ûT ; 01�q(N+L0)]
T : (13)

The arbitrary scaling factor �̂ in the estimate û also ap-
pears in ĥW . To take this non-signi�cant indeterminacy
into account, we de�ne #̂W such that ĥW = �̂ #̂W .
Our goal is to �nd the optimal W that minimizes the

variance of the estimation error (#̂W �h). To this end,
we show that the minimization problem (12) is asymp-

totically equivalent to the problem (1). Let �Â
4

= Â�A.

Using the fact that �Â
p! 0, one can show that

#̂W
:
= argmin

#
( �#� � )H W ( �#� � ) (14)

� = TL0(A); � = [~h(0)T ; 01�q(N+L0)]
T � TL0(�Â)h;

where (
:
=) denotes an asymptotic equivalence (after ne-

glecting the term TL0(�Â) (# � h)) and ~h(0) = �̂�1û.
Like in (12)-(13), the closed-form solution to (14) yields

#̂W
:
=
�
�H W �

��1
�H W �: (15)

Denote FW = W � (�H W � )�1, then #̂W = FH
W
�. By

(11) and (14), �
p! [h(0)T ; 01�q(N+L0)]

T = �h. First
of all, the class of consistency of (12) must be ensured

which implies that #̂W
p! h, or equivalently, FH

W
�

p! h

for all h. This latter yields FH
W
�h = h, i.e., the set of

linear constraints FH
W
� = I . The covariance matrix of

#̂W may be written as FH
W

IEf(���h)(���h)Hg FW .
De�ne the normalized residual error �T =

p
T (�h �

�) and its asymptotic covariance matrix R = limT!1

IEf �T �TH g. Now, the minimum (asymptotic) variance

estimate #̂W = FH
W
� is given by FW which minimizes

FH
W
RFW subject to FH

W
� = I , i.e., the problem (1).

Since FW = W � (�H W � )�1, the solutions F? and F�
(see (5) and theorem 2), imply two optimal weightings :

W? = [R+TL0(A) TL0(A)H ]#; W� = [R+� Iq]
�1 (16)

with � ! 0. The term � In in F� is neglected since �
is a full-rank matrix which guarantees that lim�!0F�
remains unchanged after removing � In.
We next study the optimal estimator in the absence

of noise. According to (14), �T =
p
T ( TL0(�Â) h +

[(h(0)� ~h(0))T ; 01�q(N+L0)]
T ). Due to (10), we have in

the absence of noise h(0) = ~h(0). Hence R = limT!1 T

IEf TL0(�Â)hhH TL0(�Â)H g. As shown in [6], the ma-
trix R has the following expression :

R =

2
4

0q 0 0
0 IN+L 
D 0
0 0 0q(L0�L)

3
5 ; (17)

where (
) denotes the Kronecker product of matrices.
Note that this q(L+1)�q(L+1) matrix is rank-de�cient.
Indeed, rank( D ) = 1 implies that rank( R ) = N + 1.
Hence the classical solution (2) designed for positive def-
inite R is not applicable in this case. The estimate R̂
of R is calculated assuming L0 as the true order, i.e.,
as if L = L0. Clearly this estimate is not consistent
unless the true order is known. In the latter case, R̂



coincides with R up to a constant, even for �nite T (re-
call that we are in the noiseless case). Indeed, (10) yields
R̂ = j�̂j2R. Consequently, the estimate ofW� yields the
same result as the true weighting : Ŵ� = [R̂+ � IM ]�1

= j�̂j�2 [R + �̂ IM ]�1, �̂ = � = j�̂j2. Unlike Ŵ�, the use
of Ŵ? = [R̂ + TL0(Â) TL0(Â)H ]# is not equivalent to
the use of W?, for �nite T , because of the errors in
the estimate Â. Also recall that the implementation
of Ŵ? is computationally expensive and requires a reli-
able rank estimation prior to pseudo-inversion. However
the most important argument for the use of Ŵ� is that
the weighting W� (and therefore Ŵ�) yields the perfect

reconstruction of h up to a multiplicative scalar when
L0 = L. This property holds under the technical con-
dition L0 � N + 2L, see [6]. The latter condition also

ensures the consistency of ĥW� when L0 > L. We thus

recommend the use of (13) with Ŵ�, �! 0.
Obviously the optimality Ŵ� does not hold in the

presence of noise. A study of the class (13) of estima-
tors in the case of the model (7) as well as the derivation
of the optimal weighting W has been undertaken in [6].
Based on a rather complicated optimal solution, the fol-
lowing sub-optimal weighting was derived :

Ŵ� = [R̂+ �̂2 IM ]�1; (18)

where �̂2 is an estimate of the noise power. This weight-
ing is a natural generalization of Ŵ� since Ŵ� reduces
to Ŵ� as � ! 0. In the case of known order (L0 = L),

ĥ� converges to a scaled version of h as �2 ! 0, even
for �nite T . This result follows from our discussion in
the noise-free case.

Numerical study

Our objective is to justify the use of the sub-optimal
Weighted Least Squares (WLS) estimator given by (13)
and (18) as an alternative to the ad-hoc method pre-
sented in [5], the plain Least Squares (PLS) estimator
given by (13) with W = IM and the noise subspace
based identi�cation technique (NS) described in [7]. The
simulations were performed by mimicking a digital com-
munication scenario. The observation signal fy (t)g

t2ZZ
is generated as the output of q = 4 identical equispaced
antennas with h(z) describing the propagation channel
between the emitter and the receiving array. The in-
put signal fs (t)g

t2ZZ has a QAM-4 digital modulation
(transmitted at rate 500 symbols/s and shaped by the
raised-cosine �lter with rollo� 1=2). The received sig-
nal is sampled at the baud rate. The average signal-to-
noise ratio (SNR) per antenna SNR = 1

q �2

P
� kh(� )k2

is set to 20dB, unless otherwise stated. On the basis of
T = 300 consecutive samples of fy (t)g

t2ZZ, we use the
ad-hoc method, PLS, WLS and NS to estimate h(z).
The quality of estimation is measured as follows. We
calculate the linear system ̂(z) = ĥ(z)# h(z) which ver-

i�es ̂(z) ! �̂�1 since ĥ(z) ! �̂ h(z) as T !1. Writ-
ing the Laurent series expansion ̂(z) =

P
�
̂(� ) z�� ,

we observe that the coe�cients ̂(� ), � 6= 0 vanish as
T ! 1. Note that these coe�cients specify the resid-
ual inter-symbol interference (ISI) if the input signal is
estimated via the minimum norm left inversion of h(z).
We will study the quantity ISI =

P
� 6=0 ĵ(� )j2 which

is not is not a�ected by the indeterminacy introduced
by �̂. In the following �gures, the symbols (`� � �o � � �'),
(`� � �x � � �'), (`� � �� � � �') and (`� � �+ � � �') show the residual
ISI, averaged over 100 independent Monte-Carlo trials,
for the ad-hoc solution, PLS, WLS and NS, respectively.
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The above �gures show the residual ISI versus the
average SNR value (L0 = 4) and the model order L0.
Unlike the NS method, which lacks consistency for large
L0, the WLS shows an acceptable estimation accuracy
which is better than the accuracy of PLS.
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