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ABSTRACT

A content based digital image signature scheme for im-

age authentication is proposed. The signature is im-

plemented by image watermarking in the wavelet do-

main. We introduce interdependency between the wa-

termark and the image data sequence, so that the de-

tection and veri�cation of the signature are independent

of the original image and the knowledge of the origi-

nal watermark sequence or location are not needed. The

signature is embedded and tested within the Entropy Ze-

rotree Wavelet Coding (EZW) model. The information

capacity of the algorithm is determined.

1 INTRODUCTION

Digital signatures are electronic protocols used for the
authentication of electronic documents whereby a re-
ceiver of a message can verify the identity of the sender
and the integrity of the message [1]. With the advent of
multimedia communications over the internet, it is natu-
ral, and critical in many applications, to provide security
mechanisms in the transmission of imagery data. To this
end, the need of digital image signatures emerges for ap-
plications where the security, integrity, and authenticity
of images are important. Military and forensic imaging
are two such areas where the security features of digital
signatures are desirable.

In this paper, we develop a new approach to create
digital signatures for imaging that adapts well to ap-
plications in multimedia communications. Rather than
attaching the signature's bit-string as a header to the
image �le, we invisibly etch the digital signature into
the image data using watermarking methods. Thus, the
digital signature is embedded in the image data and can-
not be removed by �le conversions or image manipula-
tions. Furthermore, the digital signature is \fragile" in
that it tolerates small or negligible distortions caused
by compression or other simple image manipulations. It
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does not, however, tolerate other malicious tampering
that modi�es the content of the image by the addition
or removal of objects.

2 DIGITAL SIGNATURE SCHEME

In our previous work [2], we analyzed how the interde-
pendency between the watermark and image data se-
quence a�ects the decoding of the watermark and ar-
gued that memory should be introduced during the co-
e�cient's transformation in order to extract the water-
mark without previous knowledge of the original data.
Here we propose a digital image signature scheme which
introduces memory leading to a \blind" authentication
algorithm. It exploits the rank order relationship in lo-
cal areas throughout the entire image to encode the sig-
nature.

2.1 Binary Engraving Method

In essence, the proposed method engraves a digital sig-
nature by changing the median of a local area to a value
set by its neighbors. Suppose we have the pixels of an
image in a local window b1, b2, b3 and the sorted ele-
ments b(1), b(2) b(3) in ascending order. We �rst split
the range between b(1) and b(3) into intervals of length:

space
4

= �
b(1)+b(3)

2 , then we change the median accord-
ing to the watermark as well as the region in which the
median falls. � is a tuning parameter and the default
value is 0.05.
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Figure 1: The median falls into di�erent regions and
adjusts the value of itself according to the watermark

Suppose the boundary of the regions are numbered
from the bottom to the top by l0, l1, � � �, lk, � � �, lM . Let



lk
4

= the kth boundary, Ri

4

= the ith region. l0 = b(1),
l1 = b(1) + space, � � �, lk = b(1) + kspace, � � �, lM = b(3).
Let's denote the modi�ed coe�cient b2 modi�ed by the
algorithm as b0(2). The median which falls into Rk that
is bounded by lk�1 and lk will be replaced by :

b0(2) =

�
lk case A
lk�1 case B;

where

case A
4

= k is odd and x is 1 or k is even and x is 0.

case B
4

= k is even and x is 1 or k is odd and x is 0.
and x is one bit of the watermark.

By sliding the window through the entire image, the
watermark bits are etched in.

2.2 Digital Signature In A Wavelet Trans-

formed Image

We implemented our signature scheme in a wavelet
transformed image. First we generate the signature
by combining a hashed image content information with
public key encryption. The encrypted signature ob-
tained is in the form of binary data and the wavelet
decomposition coe�cients will be changed according to
this binary sequence. The signature is engraved in the
top level of the pyramid (LL component) of the wavelet
transformed image. The reason why we choose the LL
band is due to a consideration of robustness. The water-
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Figure 2: The watermark engraving structure

mark engraving structure is displayed in Fig. 2. A �xed
size window runs without overlapping through the entire
low frequency band of the wavelet transformed image.
For ease of explanation, we assume a 3�1 window whose
elements are denoted as b1, b2, b3 which stand for the
coe�cients' value at locations with coordinate (i�1; j),
(i; j), (i+1; j). The nonlinear transformation algorithm
as we stated in last section is performed on the median
of these three coe�cients (See Fig. 3). Let's denote the
modi�ed coe�cient b2 by b0(2), then b0(2) is the function
of b(1) and b(3):

b0(2) = f(�; b(1); b(3); x): (1)

At the receiver, watermark extraction is performed by
inverting the engraving procedures. A rectangular win-
dow of the same size as the one that used in watermark
engraving is applied. A sequence with elements: B(1),
B(2) and B(3) can be obtained as the window is shifted.

original image watermarked image

Figure 3: Left: the original image. Right: watermarked
image with 2-level decomposition and � = 0:05

Since B(1) and B(3) are unchanged, we can get two pos-
sible values of B0

(2) :

B0

(2) =

�
f(�;B(1); B(3); 0) if x = 0
f(�;B(1); B(3); 1) if x = 1

where x is the possible value of watermark sample.

We compare the distance between B(2) and the out-
come at x = 0 with the distance between B(2) and the
outcome at x = 1 , and we select the x which makes B0

(2)

closest to B(2). There is no need of the original image
to retrieve the signature. The extraction is simpler than
engraving, which is desirable for real time processing.

This procedure is repeated by shifting the window
through the entire image. At the end, we have obtained
the watermark from the unknown image. If encrypted
when inserting the watermark, the binary sequence ob-
tained must be subsequently decrypted. Furthermore,
the image received for authentication is hashed using
the same hash as was used to sign the original image.
We compare it with the content information the water-
mark carries. If the two achieve high similarity, we can
then declare the authenticity of the image. Otherwise,
the image will be regarded as tampered.

2.3 Digital Signatures in a Wavelet Compres-

sion Scheme

We embedded the proposed scheme into the EZW cod-
ing algorithm [3]. The signature engraving has been
modi�ed to adapt to the compression scheme mainly
because of the di�erent level of quantization and coef-
�cients truncation at di�erent compression ratio. The
watermark location is not limited in the top-level pyra-
mid of wavelet transformed image. It's extended to any
signi�cant local area. The local area is signi�cant if the
image data in the area contains a margin larger than the
size of quantization threshold. This extension is adap-
tive to quantization and it's now possible to embed more
information bits.

2.4 Multi-bit Engraving

With a slight change, we can obtain \multi-bit engrav-
ing" within the compression watermarking framework.
The principle of multiple bit engraving is the same as



our binary engraving scheme. Information can be hid-
den in a local area where its variance overcomes quan-
tization. Hence, a binary bit 0 or 1 can be hidden if
the di�erence between two coe�cients is larger than the
quantization constant. The signature we engrave is rep-
resented by binary data so we engrave one bit each time
when appropriate. Actually, the capacity can be greatly
increased if we engrave as many bits as we can. When
the di�erence is several times larger than the quantiza-
tion constant, we could re�ne the engraving process and
split the previous division into portions with the size of
the quantization constant. Formerly, we inserted two
values only: 0 and 1. Now if the distance is twice as
large as that of the quantization constant, 0, 1 and 2,
a 3-ary symbol can be inserted. This approach is called
\multiple bit engraving". By using multi-bit engraving,
we are able to insert more information.

3 WATERMARK BIT CAPACITY

The bit rate of a watermark refers to the amount of in-
formation that can be embedded within an image. The
bit rate is measured in bits per pixel. Let's view a com-
pressed image as an approximately continuous, band-
limited channel. An image I is regarded as the signal
and the quantization truncation becomes the source of
noise.

We will show in this section that the information ca-
pacity for multi-bit engraving scheme is bounded by the
rate given by Shannon's channel capacity theorem, al-
though a di�erent interpretation of noise is used. First,
recall Shannon's capacity result [4]: Let P be the aver-
age transmitter power, and suppose the noise is white
thermal noise of powerN in the bandW . By su�ciently
complicated encoding systems it is possible to transmit
binary digits at a rate

C� W log2 (1 +
S

N
) (2)

where C is the channel bit rate, S is the signal power,
N is the noise power and W is the bandwidth.

The inequality sets up the upper bound on the pos-
sible rate for an error-free communication channel sub-
ject to Gaussian noise. The principle Shannon used to
derive the upper limit is that two symbols modulated
at the sender in a communication channel must have a
noise margin to get the correct decision at the receiver.
With the assumption of white Gaussian noise, Shannon
showed that the capacity problem can be converted to
the following: Find the maximum rate of signals which
satisfy:

1. Its average power is P and band-limited to W .

2. The distance between two signals in their geometri-
cal representation is larger than the noise of power
N .

In our model, we view the compressed image as an
approximately continuous, band-limited channel. Let's
assume the signal, i.e. the image I , has a power P and
the quantization constant is q, the truncation threshold
of the wavelet coe�cients. How many bits of informa-
tion can we embed? An equivalent conclusion can be
reached by analyzing the watermark engraving. A wa-
termark bit can be inserted if and only if the distance
between the maximum and the minimum coe�cients in
the selected window is large enough to overcome the
quantization. It is clear that whether or not a water-
mark signal can be engraved is determined by the dis-
tance of two signals. Thus, we build on a similar logical
foundation. The information bit rate we can achieve by
our engraving scheme is equal to the maximum rate of
signals with noise power N = q2. The following evolves
directly from Shannon's theorem:

Theorem:The information bit rate we can engrave in
an image is bounded by

B� W log2
P +N

N
; (3)

where B is the information bit rate, P is the image
power, N = q2, q is the quantization constant, and W

is the image bandwidth.
An intuitive understanding of this result is important.

When P is very small such that it goes to 0, log2
P+N
N

goes to 0. The result �ts for the type of images with
constant background, in other words, with very small
variance. On the contrary, when P is larger, the capac-
ity is larger. So images with larger variance hide more
information.

3.1 Information Capacity for Binary Engraving

Scheme

In the coding algorithm, the most signi�cant bit is coded
�rst. So the quantization starts from the largest quanti-
zation constant and is re�ned gradually until the desired
compression ratio is met. The quantization process is
described by a descending sequence q(i) (i = 1 to n).
q(i) is the quantization constant used at the ith re�ning
process. q(n) is the last quantization constant when cod-
ing ends. Each q(i) is the power of 2 and q(i) = 2q(i+1),
q(0) is the largest quantization constant. We also de�ne
sequence B(i) and b(i). B(i) and b(i) are the bit rate
at the ith re�ning process for multi-bit engraving and
binary engraving respectively.
We derive the relation between the bit rate sequence

of multi-bit and binary engraving. The proof of the next
theorem is given in [5]:

Theorem: The bit rate of binary engraving is related
to the bit rate of multiple bit engraving by:

O(b(i+ 1)) = O(B(i+ 1))�O(B(i)) (4)

O(B(i+ 1)) = O(b(i+ 1)) +O(b(i)): (5)

This can be proved based on the assumption that
b(i) � B(i) at i+ 1, i.e. B(i) and b(i) are far less than



B(i + 1). The equations can be used to predict B(i)
and b(i). We can predict B(i) if we know b(i), or we can
predict b(i), if we know B(i). The latter is particularly
useful since we have derived an upper bound for B(i).

3.2 Experimental Results Towards Bit Rate

We studied the relationship between bit rate vs PSNR
of the transformed image as compared to the original
image and the observation on the relationship between
bit rate vs quantization level. The experimental results
also con�rm our theoretical results. The assumptions
we make for the estimation are reasonable as the exper-
imental results show. Fig. 4 plots the bit rate ver-
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binary and multi-bit engraving
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sus log2 (1 +
P

q2
). The higher the value of log2 (1 +

P

q2
),

the higher the amount of the information bits per im-
age. The bit rate results include: experimental result
using multi-bit engraving scheme, experimental result
using binary engraving scheme and the upper bound we
estimated using experimental data. The experimented
image is the image in Figure 3. P and q are de�ned pre-
viously. The signal power is estimated by the image's

variance that is measured in the pixel domain, treating
the image as a data matrix. The sequence of quantiza-
tion constants is 64, 32, 16, 8, 4, 2, 1. The upper bound
is obtained by measuring the image's bandwidth in the
FFT transformed domain to approximate W . We get
the bandwidth by plotting the discrete power spectrum
distribution of the image. The bandwidth is obtained at
a point where the ratio of Pmax and Pw is 30db. Pmax is
the maximum power, which is usually the image's power
at the lowest frequency.
A second experiment which illustrate the information

bit rate is depicted in Fig. 5. We measured the water-
mark bit rate in bits per pixel and PSNR for images with
di�erent sizes. We found that the higher the PSNR, the
higher the watermark bit rate is. Thus, more informa-
tion bits can be hidden when there is less compression.
As we can see, the bit rates for the 512 by 512 image
and the 256 by 256 image are comparable with the same
PSNR. This result implies the relation between the SNR
and the bit rate as well.

4 OTHER EXPERIMENTAL RESULTS

We tested the digital signature on its robustness by at-
tacking the image in various ways. We tried to rescale
the image and the signature can be recovered when we
restore the manipulated image by resizing or padding.
We repeatedly compressed the image with the signature
and extracted the embedded information out each time.
The compression ratio changed each time. As a result,
the signature stayed in the image if the compression ra-
tio used in later compression was lower than or equal
to the compression ratio we applied when the signature
was engraved. A comparison of the MSE and PSNR
of the original image versus the compressed image with
and without the signature was computed [2]. There is
little di�erence brought by the signature engraving.
The edge information based signature system was de-

veloped and implemented by our signature scheme. The
system can detect the deliberate tampering imposed on
the image. Because of the multiresolution decomposi-
tion performed by wavelet transform, the system is able
to roughly point out the place where the image has been
tampered.
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