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ABSTRACT

In the two-source two-sensor blind source separation sce-

nario, only an orthogonal transformation remains to be

disclosed once the observations have been whitened. In

order to estimate this matrix, a maximum-likelihood

(ML) approach has been suggested in the literature,

which is only valid for sources with the same symmetric

distribution and kurtosis values lying in certain positive

range. In the present contribution, the expression for

this ML estimator is reviewed and generalized to include

almost any source distribution.

1 INTRODUCTION

The present contribution addresses the problem of the

blind source separation (BSS). It consists in the recon-

struction of a set of independent source signals from

another set of measurements which can be regarded as

linear mixtures of the sources. Latest research shows

the convenience of a two-step strategy to tackle this

problem [2], [3]. In a �rst stage, the set of observa-

tions are decorrelated and normalized by means of a

pre-whitening processing carried out by second-order

analysis. As a result, only an orthogonal transforma-

tion remains to be unveiled, which needs recourse to

higher-order techniques in a second stage [1], [2], [4]. In

the simpli�ed 2-source 2-sensor scenario, the identi�ca-

tion of this orthogonal matrix reduces to the estimation

of a Givens rotation matrix which can be written as

a function of only one parameter: the rotation angle.

Basically, a counter-rotation performed using this angle

must provide a set of higher-order (usually fourth-order)

independent signals: the wanted sources.

Several methods have been proposed in the literature

to estimate this angle. In [1], Comon comes up with an

estimator that is a function of the 4th-order cumulants

of the pre-whitened sensor signals. The same author,

in [2], resorts to the maximization of orthogonal con-

trast functions, giving rise to the independent compo-

nent analysis (ICA) of the observations. The ML prin-

ciple is considered in [3]. Taking the Gram-Charlier ex-

pansion of the source probability density function (pdf),

an optimal angle in the ML sense is found. However, the

conditions for the Gram-Charlier expansion to be valid

restrict the applicability of this estimator to the case of

symmetric sources with the same distribution and kur-

tosis values lying in certain positive range.

Herein the last procedure is briey reviewed and,

along the same lines, another method is put forward. Its

most appealing feature is that the proposed estimator

is able to treat almost any combination of source pdfs.

Simulations show it e�ectively valid for many di�erent

source distribution combinations.

Section 2 presents a quick summary of the problem

and establishes the notation employed throughout the

paper. Section 3 reviews the ML approach developed in

[3]. Based on this method, section 4 is devoted to intro-

ducing a new angle estimator. Simulations carried out

to assess its e�cacy are reported in section 5. Finally,

conclusions are drawn in section 6.

2 PROBLEM, MODEL AND NOTATION

The aim of BSS can be stated as recovering a set

of q zero-mean unit-power independent source signals,

x(k) = [x1(k); : : : ; xq(k)]
T, from a set of p instanta-

neous linear mixtures, y(k) = [y1(k); : : : ; yp(k)]
T. In

matrix form and in the noiseless case, this can be mod-

elled as:

y(k) = Mx(k); k = 1; 2; : : : ;(1)

in which M 2 Rp�q denotes the linear transformation

from sources to observations, referred to as transfer or

mixing matrix. After pre-whitening, a set of unit-power

uncorrelated observations, z(k), is obtained. They are

easily shown to be related to the original sources through

an orthogonal transformation:

z(k) = Qx(k); k = 1; 2; : : :(2)

The estimation of Q requires the use of techniques

based on higher-order statistics. Considering the sim-

pli�ed 2-source 2-sensor scenario, the matrix Q becomes

a Givens rotation of the form:

Q =

�
cos � � sin �

sin � cos �

�
:(3)



Therefore, only the rotation angle � remains to be esti-

mated in order to carry out the source extraction.

The independent realizations of the sources and the

whitened observations accept a polar as well as a com-

plex form representation [3]:

(4)

(x1(k); x2(k)) = x1(k) + jx2(k) = �ke
j�0

k = �k\�
0

k

(z1(k); z2(k)) = z1(k) + jz2(k) = �ke
j�k = �k\�k

�

k = 1; 2; : : :

where, in virtue of equation (2), the angles �0k and �k
are readily related by

�k = �0k + �:(5)

These polar and complex form representations will

prove very convenient at certain points of the develop-

ment. The problem, then, is reduced to determining

the angle � from the whitened observations. Once this

has been done, a counter-rotation provides the original

source waveforms.

Let us de�ne the following statistical terms [5]. In the

�rst place,

�xmn = E[xm
1
xn
2
](6)

represents the (m+ n)th-order moment of the bivariate

random variable (x1; x2). Analogously,

�xmn = Cummn[x1; x2](7)

denotes the (m + n)th-order cumulant of the same pair

of variables. Similar notation can be employed for the

whitened observations, just by changing the super-index

\x" by \z" in the moment and cumulant expressions.

Furthermore, it will be useful to recall the following re-

lationships [5]:

�x
40 = �x

40 � 3(�x
20)

2 = �x
40 � 3;(8)

�x
04

= �x
04
� 3(�x

02
)2 = �x

04
� 3;

�x
22 = �x

20�
x
02 = 1:

The �rst two equations express the 4th-order marginal

cumulants (or kurtosis) of the sources as functions of

their respective moments. The assumption that both

signals are unit-power has been taken into account.

These two equations are also true for the decorrelated

measurements, due to (2), which means that they are

both unit-power as well. The last identity comes from

the source statistical independence assumption.

3 A MAXIMUM LIKELIHOOD ESTIMATOR

By de�nition, the ML estimator of � is the value of the

rotation angle that maximizes the (log-)likelihood of the

given whitened observations, z(k). Mathematically, this

idea can be expressed as:

�̂ML = arg max
�

NX
k=1

logpz(z(k) j �);(9)

for N independent observations z(k), k = 1; 2; : : : ; N ,

where pz(�) denotes the pdf of the decorrelated measure-

ments.

In [3], the source joint pdf (jpdf) is approximated by

its Gram-Charlier expansion truncated at the fourth-

order term. In order for this expansion to be valid,

two constraints are introduced. In the �rst place, the

source marginal pdfs must have zero skewness, i.e., zero

3th-order cumulant (�x
30

= �x
03

= 0), which is basi-

cally a symmetry condition. In the second place, the

source kurtosis must lie in the range [0; 4], which ex-

cludes all short-tailed (platykurtic, with negative kur-

tosis) pdfs and even some long-tailed (leptokurtic, with

positive kurtosis) ones, such as the exponential distri-

bution. Then, developing the ML criterion (9) over the

Gram-Charlier expansion of the source jpdf and consid-

ering sources with the same distribution, the ML esti-

mator of � is found to be:

�̂ML =
1

4
arctg

P
k �

4

k sin 4�kP
k �

4

k cos 4�k
:(10)

The properties of the estimator are also studied in [3].

For symmetric source pdfs, it is found to be unbiased

for any sample size. In addition, the Cramer-Rao lower

bound (CRLB) for the estimation of � under the condi-

tions of this ML development, i.e., when the source pdfs

are approximated by their Gram-Charlier expansion, is

deduced to be:

Var(�̂) >
6

N [(�x
40
)2 + (�x

04
)2]

;(11)

where �̂ is expressed in radians.

4 GENERALIZATION

Dropping the time index k in the sequel for convenience,

let us de�ne:

� , E[�4ej4�]:(12)

According to relationships (4) and (5), equation (12)

accepts an expansion as a function of the sources and

the unknown rotation angle:

� = ej4�E[�4ej4�
0

] = ej4�E[(x1 + jx2)
4]:(13)

But, from the expressions given in (8),

E[(x1 + jx2)
4] = �x40 + �x04:(14)

From the last two equations, and providing that

�x
40
+ �x

04
6= 0, angle � is derived as:

� =
1

4
angle (� � sign(�x40 + �x04)) :(15)

The argument of the sign function is not known, since

by de�nition the sources are not known either. However,

from (4) and (8):

� , E[�4] = E[(x21 + x22)
2] = �x40 + �x04 + 8;(16)



which is also available as a function of the whitened data

as:

� = E[(z2
1
+ z2

2
)2]:(17)

As a result, when � and � are estimated from �-

nite sample observations, the following angle estimator

arises:

�̂EML =
1

4
angle (� � sign(� � 8)) :(18)

To arrive at this expression no assumptions on the

source pdfs have been made at all, which makes this

estimator valid for any source distribution combination

with any type of symmetry, as long as the source kurtosis

sum is not zero.

The connection between estimators (10) and (18) can

easily be made as follows. Note �rst that the numerator

and denominator of expression (10) are proportional,

respectively, to the sample estimates of the imaginary

and real parts of � de�ned in (12), that is,

�̂ML =
1

4
arctg

�
Im(�)

Re(�)

�
:(19)

By comparing the last two formulae and in virtue of

the properties and relationship between the \arctg(�)"

and \angle(�)" functions1, it turns out that

�̂ML = �̂EML , � 2
h
�
�

8
;
�

8

i
:(20)

Moreover, it is simple to show that if the true angle

� is less than ��=8 or greater than �=8, then estimator

(10)/(19) produces a bias of +�=4 or ��=4 radians, re-

spectively, relative to estimator (18). Estimator (10) is

hence a particular case of (18) when � lies in [��=8; �=8]

(or [�22:5o; 22:5o]). Even with � in that interval, the

conditions of the Gram-Charlier expansion restrict the

applicability of (10) to symmetric sources with kurtosis

between 0 and 4, although (20) still con�rms the va-

lidity of (10) outside that kurtosis range and regardless

the source symmetry. In conclusion, the ML procedure

is extended through (18) to include almost any source

distribution. On this account, expression (18) is referred

to as Extended ML (EML) estimator. Note, however,

that the estimator suggested here may not be the ML

estimator in all cases, but it is so, at least, under the

conditions of [3].

It is worth computing � as a function of the statistical

properties of the whitened observations. On the one

hand, from (12):

(21) � = E[(z1 + jz2)
4] =

= (�z
40
� 6�z

22
+ �z

04
) + j4(�z

31
� �z

13
);

and, on the other hand, from (13), (14), (16) and (17):

� = ej4�(� � 8) = ej4�(�z
40
+ 2�z

22
+ �z

04
):(22)

1Remark that arctg(�) 2 [��

2
;
�

2
], whereas angle(�) 2 [��; �].

In particular, the modulus of (21) and (22) must be

equal, which leads to a relationship among the 4th-order

cumulants of the whitened sensor outputs:

(�z
31
� �z

13
)2 � �z

22
(�z
40
+ �z

04
) + 2(�z

22
)2 = 0:(23)

This relationship was originally deduced by Comon fol-

lowing more algebraic arguments [1]. Finally, from (13)

and (14), � may be expressed as a function of the source

statistics:

� = ej4�(�x40 + �x04):(24)

Equations (21), (22) and (24) stress the fact that a ro-

tation � carried out on the source signals manifests it-

self as an analogous rotation in the 4th-order cumulant

space, so that the 4th-order cumulants of the sources

and the decorrelated measurements are related by the

aforementioned expressions.

5 SIMULATION RESULTS

In order to test the new estimator performance, sev-

eral Monte Carlo simulations have been run. Three

di�erent combinations of source pdfs regarding their

tail or kurtosis sign have been considered: both short,

long-short and both long, together with three di�erent

symmetry combinations: both symmetric, symmetric-

asymmetric and both asymmetric. That makes a total of

nine distribution pairs for the source signals. The actual

source pdfs employed are (in parenthesis the abbrevia-

tions used in the results table): uniform (\Uni"), expo-

nential (\Exp"), Laplacian (\Lap"), Rayleigh (\Ray")

and a short-skewed distribution (\Shsk"), which is sim-

ply an asymmetric triangular pdf.

For each distribution pair, after creating signal real-

izations made up of 5000 samples, they are made zero-

mean, normalized to unit power, and possible remains

of statistical dependence up to 4th-order are removed by

using the ICA procedure developed in [2]. Then a rota-

tion matrix of �xed angle, � = 15o, is applied to the set

of source signals, giving a hypothetical set of whitened

sensor outputs. The estimation of the rotation angle is

carried out through expression (18), where � and � are

obtained from the whitened sensor data by means of

the sample estimates of their de�nition equations (12)

and (16). From each realization, two parameters are

computed: the bias (�̂ � �) expressed in degrees, and

the values of (� � 8) in order to test how they approx-

imate the sum of source kurtosis �x40 + �x04. The mean,

standard deviation, maximum and minimum value for

these two parameters computed over one hundred Monte

Carlo runs are summarized in table 1.

From these results, the new extension can be regarded

as successful in estimating the rotation angle �. This

is manifested in the low bias and variance of the es-

timator, which exhibits an unbiased performance. It

is also remarkable how (� � 8) approximates the sum



of source kurtosis very accurately in all cases (e.g., for

uniform{exponential sources is approximately equal to

�1:2 + 6 = 4:8).

It is interesting to compare the variance obtained here

with the bound given by (11). For example, for two

Laplacian distributions (�x
40

= �x
04

= 3) and N = 5000

samples, equation (11) predicts a lower bound for the

standard deviation of 0:4678o. However, from table 1

the empirical standard deviation obtained for this case

turns out to be just 0:1952o, clearly below that limit.

This comparison con�rms the initial suspicion, already

guessed in the previous section and even in [3], that the

conditions of the Gram-Charlier expansion are too re-

strictive and, even more importantly, not necessary to

be met if estimator (10) is to be applied. As a conclu-

sion, the CRLB given in (11) can actually be improved,

as seen in these simulation results.

6 CONCLUSIONS

The ML approach proposed in [3] has been considered.

By using the Gram-Charlier expansion of the source pdf,

the angle estimator that maximizes the likelihood of

the given observations is obtained. Nevertheless, the

validity domain of the Gram-Charlier development re-

stricts the applicability of this ML estimator to symmet-

ric sources with kurtosis lying in the range [0; 4].

Along the same lines, a new expression for the rota-

tion angle estimator is found. This estimator can be

seen as an extension of the ML solution of [3], which,

under minor alterations, makes it valid to any source pdf

combination, since neither pdf expansions nor assump-

tions on the source pdfs are necessary; only the source

kurtosis sum must be di�erent from zero.

Several simulations prove the validity of the theoret-

DISTR. BOTH SYMMETRIC SYMMET.{ASYMMET. BOTH ASYMMETRIC

TYPE PAIR � � 8 �̂ � � PAIR � � 8 �̂ � � PAIR � � 8 �̂ � �

SHORT- Uni- �2.3974 0.0000 Uni- �1.7904 �0.0511 Shsk- �1.1989 �0.0043

-SHORT -Uni 0.0318 0.0048 -Shsk 0.0521 0.2624 -Shsk 0.0658 0.0605

�2.2832 0.0168 �1.6190 0.6677 �1.0676 0.1575

�2.4618 �0.0139 �1.9331 �0.8875 �1.4208 �0.2374

SHORT- Uni- 1.7945 �0.5954 Uni- 4.8091 �0.1862 Shsk- 5.3531 �0.0357

-LONG -Lap 0.6772 1.7596 -Exp 1.2021 0.6010 -Exp 1.1262 0.3284

6.5933 3.4871 8.8689 1.0828 10.8068 0.8244

0.8864 �4.8006 2.6049 �1.8128 3.3907 �0.7187

LONG- Lap- 5.8996 �0.0060 Exp- 8.9150 �0.1166 Exp- 6.0870 �0.0028

-LONG -Lap 0.5954 0.1952 -Lap 1.5991 0.3388 -Ray 1.1810 0.4021

7.0885 0.5475 16.6219 0.6192 11.5700 0.8987

4.6835 �1.1677 6.0314 �1.2117 4.2050 �1.4049

Table 1: Results of the simulations with the EML estimator. Signals are composed of 5000 samples. Each four-

element column displays, from top to bottom, the mean, the standard deviation, the maximum and the minimum

value obtained for the corresponding parameter and signal combination over 100 Monte Carlo runs. Angle values

(�̂ � �) are expressed in degrees.

ical results, o�ering satisfactory angle estimation in a

wide variety of source pdf combinations, with di�erent

tails (i.e., kurtosis sign) and symmetries.

A straightforward extension to the general BSS

set-up of more than two sources and two sensors has

already been accomplished, in the iterative pairwise

fashion proposed in [2]. Performance is also very

satisfactory for this extension, although results are

not shown here due to the lack of space but will be

presented in a future paper.
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