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ABSTRACT

In this paper, we derive a prewhitening-induced lower-
bound on the Frobenius-norm of the di�erence between
the original mixing matrix and its estimate in Indepen-
dent Component Analysis. The derivation makes use of
a lemma, stating that the sum of singular values of a
matrix product cannot be larger than the sum of the
products of the singular values of the distinct matrices.

1 INTRODUCTION

Let us use the following notation for the basic Indepen-
dent Component Analysis (ICA) or Blind Source Sepa-

ration (BSS) model:

Y =MX +N = ~Y +N; (1)

in which the observation vector Y , the noise vector N
and the source vector X are zero-mean stochastic vec-
tors with values in R or C ; the mixing matrix M is
assumed to be regular; ~Y is the signal part of the ob-
servations. The goal is to exploit the assumed mutual
statistical independence of the source components to es-
timate the mixing matrix and/or the source signals from
realizations of Y .

Many ICA-algorithms are prewhitening-based. An
Eigenvalue Decomposition of the observed covariance al-
lows to estimate the number of sources and to decorre-
late them; the remaining rotational degree of freedom is
�xed by resorting to the Higher-Order Statistics (HOS)
of the observations. The prewhitening step has the dis-
advantage w.r.t. the higher-order step that its partial
results are directly a�ected by additive Gaussian noise.
The error introduced at this stage cannot be compen-
sated by the higher-order step, and introduces an upper-
bound to the performance of the ICA-algorithm. This
has led to the development of higher-order-only ICA-
procedures [1, 2, 6, 8].

In the literature, performance bound derivations fo-
cus on the quality of separation, in terms of the Inter-
Symbol-Interference [4]. On the other hand, it would be
natural to evaluate the identi�cation accuracy in terms
of the Frobenius-norm of the di�erence between the esti-

mated and the true mixing matrix. This forms the topic
of our paper.
In the next section, we will �rst prove a lemma stating

that the sum of singular values of a matrix product can-
not be larger than the sum of the products of the singu-
lar values of the distinct matrices. Although this lemma
looks like a classical result, we have not been able to �nd
it in the standard literature on matrix algebra. In par-
ticular it is stronger than what could be expected from
the inequality in [10], Chapter 7, Sect. 3, Problem 18.
Based on this lemma, we will derive a prewhitening-
induced lower-bound on the Frobenius-norm of the dif-
ference between the original mixing matrix and its es-
timate. Section 3 illustrates the result by means of a
number of simulations.

2 RESIDUAL BOUND

First we prove the following lemma:

Lemma 2.1 Let the SVD's of A 2 C
I�I , B 2 C

I�I

and the product AB be given by:

A = UASAV
H
A ; (2)

B = UBSBV
H
B
; (3)

AB = UABSABV
H
AB; (4)

and let their respective singular values be given by �i(A),

�i(B) and �i(AB) (1 6 i 6 I). Then we have:

X

i

�i(AB) 6
X

i

�i(A)�i(B): (5)

The equality sign holds i� the matrix VH
A
UB is diago-

nal, containing only unit-norm scalars, in the case that

all the pairs (�i(A); �i(B)) are mutually di�erent; in the

case that (�i(A); �i(B)) = (�i+1(A); �i+1(B)) = : : : =
(�j(A); �j(B)), the equality sign still holds if the corre-

sponding diagonal block of VH
A
UB is a unitary matrix.

Proof: First we observe that the sum
P

i aibi, in which
ai and bi are positive real numbers, is maximal if ai
and bi are ordered in the same way as a function of



magnitude. This is easily veri�ed in the case of two
terms. The general case follows immediately, as any
permutation (of e.g. the elements bi) is a composition
of transpositions (i.e. permutations of two elements).
Next, observe that the right-hand side of Eq. (5) can be
written as the inner product hSA;SBi. The left-hand
side takes the form

hAB;UABV
H
AB

i

= hSA(V
H
A
UB); (U

H
A
UABV

H
AB
VB)SBi (6)

def
= hSAP1;P2SBi: (7)

We will consider this expression as a function f of the
unitary matrices P1 and P2. It will be di�erentiated
over the manifolds of unitary matrices, and the global
optimum will be found among the \critical points" (i.e.
where an in�nitesimal variation of P1, or P2, does not
in
uence the value of f(P1;P2)).
The e�ect on f of a variation of e.g. P1 is investigated
by giving P1 a \velocity" as a function of a \time" coor-
dinate t. The derivative with respect to t is indicated by
a dot: _P1. The condition for P1(t) to remain unitary,
is that _P1 = 
P1, in which 
 is skew-Hermitean. We
have:

_f(P1;P2) = hSA _P1;P2SBi (8)

= h
;SAP2SBP
H
1 i: (9)

This inner product vanishes i�

SAP2SBP
H
1
= P1SBP

H
2
SA; (10)

for which we de�ne C = P2SBP
H
1
. A similar derivation

in terms of P2 yields:

SAC
H = CSA: (11)

Eqs.(10,11) can be combined to yield:

S2
A
(CCH) = (CCH)S2

A
; (12)

S2A(C
HC) = (CHC)S2A; (13)

S2
B
(CCH) = (CCH)S2

B
; (14)

S2B(C
HC) = (CHC)S2B: (15)

Assume that all the pairs (�i(A); �i(B)) are mutually
di�erent. Then the preceding commutation equations
can only hold, if P1 is a matrix that contains exactly
one, unit-modulus, entry in each column and row. Re-
calling the de�nition of P2, the equivalent condition for
P2 is then automatically satis�ed. Recalling the prelim-
inary observation, the global optimum of f is reached
when P1 is diagonal. In case that not all the singular
value pairs are mutually di�erent, the derivation can be
generalized as speci�ed by the lemma. 2

Let the sample estimate of C
~Y
2 be given by Ĉ

~Y
2 , and

let the symmetric EVD's of these matrices be given by

C
~Y
2 = ED2EH ; (16)

Ĉ
~Y
2 = ÊD̂2ÊH : (17)

For convenience we assume that the diagonal entries of
D = diag(d11; d22; : : :) are strictly positive and mutu-

ally di�erent (analogous for D̂ = diag(d̂11; d̂22; : : :)).
The derivation for the general case is analogous, but
more cumbersome. With respect to the inherent inde-
terminacy of the ICA-solution (the mixing matrix can
only be estimated up to a scaling and permutation of its
columns), we assume that M and its estimate M̂ cor-
respond to unit-variance sources and source estimates,
respectively. The SVDs of M and M̂ are written as:

M = EDQ; (18)

M̂ = ÊD̂Q̂: (19)

Now we show that the quality of the estimation is
bounded by the quality of the prewhitening in the fol-
lowing way:

Theorem 2.2 The quality of the mixing matrix esti-

mate is bounded by the quality of the prewhitening in

the following way:

kM� M̂k
2
>
X

i

(d2ii + d̂2ii � 2sii) (20)

>
X

i

(dii � d̂ii)
2 (21)

> 0; (22)

in which sii is the ith singular value of (Ĉ
~Y )H=2

�

(C
~Y )1=2, involving arbitrary square roots of C

~Y and

Ĉ
~Y . The �rst inequality reduces to an equality for an

optimal choice of the unitary factor in the higher-order

ICA-step. The bound is induced by the prewhitening

in the following way: the second inequality vanishes i�

E = ÊP, in which P is a column-wise permuted diag-

onal matrix, containing only unit-modulus entries, and

the third inequality vanishes if the eigenvalues of C
~Y are

correctly estimated.

Proof: The minimization of kM� M̂k
2 in terms of Q̂

is a unitary Procrustes problem ([9], p. 582). We have:

kM� M̂k
2 = kMk

2 + kM̂k
2
� 2Re(hM; M̂i)(23)

= kDk
2 + kD̂k

2

�2Re(hD̂ÊHED; ~Qi); (24)

in which ~Q
def
= Q̂HQ. If the SVD of D̂ÊHED is given

by USVH , then the optimal ~Q takes the form of UVH .
This proves the �rst inequality.
The second inequality,

X

i

sii 6
X

i

diid̂ii; (25)

is established by resorting to Lemma 2.1, in which A =
D̂ÊH and B = ED. 2
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Figure 1: The RMSE between the true mixing matrix
and its estimate. E�ect of the SNR (�21 = �22 = 0dB)
on the quality of the reconstruction. �1 = 0. Solid:
the achieved performance. Dashdotted: the �rst upper-
bound of performance in Theor. 2.2. Dotted: the second
upper-bound of performance in Theor. 2.2.

3 SIMULATIONS

We consider two zero-mean complex-valued source sig-
nals, uniformly distributed over the circles with radius
�1 and �2. Both signals impinge on a linear �=2 eq-
uispaced array of 10 unit-gain omnidirectional sensors
in the far �eld of the emitters. In the simulations the
lengths of the columns of the estimated mixing matrix
M̂ are normalized in the sense that the source estimates
have unit power. Under this assumption, the theoretical
values of the elements of the transfer matrix are given
bympq = �qe

2j�p�q , where �q equals the electrical angle
of source q. The noise is Gaussian, with power �2N . In
each experiment the datalength T = 100 and the an-
gle �1 = 0. All curves are obtained by averaging over
500 Monte Carlo simulations. For the ICA, we used the
algorithm described in [5], with the higher-order stage
based on the fourth-order cumulant of the observations.
In Figs. 1 and 2 we plot the Root Mean Square Er-
ror (RMSE) between the true mixing matrix and the
one estimated with the maximal diagonality approach,
both normalized in the same way. The dashdotted and
dotted lines give the two upper-bounds of performance
speci�ed in Theor. 2.2.
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Figure 2: The RMSE between the true mixing matrix
and its estimate. E�ect of the di�erence in DOA (�1 =
0) on the quality of the reconstruction. �21 = �22 = 0
(dB). Solid: the achieved performance. Dashdotted: the
�rst upper-bound of performance in Theor. 2.2. Dotted:
the second upper-bound of performance in Theor. 2.2.
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