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ABSTRACT

Harmonic models are a common class of sinusoidal mod-
els which are of great interest in speech and musical
analysis. In this paper we present a method for esti-
mating the parameters of an unknown number of musi-
cal notes, each with an unknown number of harmonics.
We pose the estimation task in a Bayesian framework
which allows for the speci�cation of (possibly subjec-
tive) a priori knowledge of the model parameters. We
use indicator variables to represent implicitly the model
order and employ a Metropolis-Hastings algorithm to
produce approximate maximum a posteriori parameter
estimates. A novel choice of transition kernels is pre-
sented to explore the parameter space, exploiting the
structure of the posterior distribution.

1 INTRODUCTION

Sinusoidal models are popular in analysis of musical and
speech signals due to considerations of the physical basis
and periodic nature of voiced speech and of many mu-
sical instruments [5, 9, 11]. The signal is modelled as a
series of frames, with the parameters regarded constant
over the duration of each frame. We impose harmonic
constraints upon the model, such that all frequencies
are integer multiples of a fundamental, we hope to pro-
duce a good model �t whilst reducing the number of
parameters to estimate [4, 6]. We describe each set of
related harmonics as a note. Each note has a fundamen-
tal frequency (or pitch) !q with Hq harmonics, and is
generated by a harmonic basis matrix Gq ,

Gq = [ s(!q) : : : s(Hq!q) c(!q) : : : c(Hq!q)]

s(!) = [ sin(!t1) sin(!t2) : : : sin(!tN ) ]
T

c(!) = [ cos(!t1) cos(!t2) : : : cos(!tN ) ]
T

and a vector of amplitudes bq . A frame of the signal, d
(of length N), is modelled as the sum of up to Q notes,
each of which is represented as a general linear model
[2, 10], with each note turned on or o� by a binary

�Work supported by the Engineering and Physical Sciences
Research Council.

indicator variable q. This approach means that the
model order selection task is implicit and is performed
jointly with the parameter estimation, as in reversible
jump methods (e.g., see [1]), but the e�ective size of the
parameter space is �xed (by the choice of the maximum
number of notes Q) such that changes in the number
of notes and harmonics present do not involve a change
of dimensions. The error term is assumed Gaussian,
e � N(0; �2IN ), and the model becomes

d =

QX
q=1

qGqbq + e.

Rewriting the set of parameters of each note as �q =
f!q; Hq; q ;bqg and the whole parameter set as � =
f�1;�2; : : : ;�Q; �g, the likelihood is given by

p(dj�) = (2��2)�
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2 BAYESIAN FORMULATION

For the structure of the a priori distributions of each
note we write

p(�q) = p (!q; Hq ; q;bq)

= p(!qjq ; Hq) p(q) p(bq jHq) p(Hq):

The prior for the amplitude parameters is chosen to
be constant for values in the region jbq[i]j < B=2 (8i =
1 : : : 2Hq), and zero outside it, in order not to inuence
the inference procedure. The density in this region is
pB(bq jHq) = 1=B2Hq :

The choice of the other priors is left general, but we
can use a Bernoulli distribution for q and a uniform
distribution for Hq in the absence of other prior infor-
mation. The frequency prior p(!qjq ; Hq) can be cho-
sen to favour the continuity of frequency tracks between
frames of data. A Je�reys' prior is used for the scale
parameter, p (�) = R�=�, chosen for its uninformative
nature [2] and ease of marginalisation.



From Bayes theorem we obtain the posterior distribu-
tion

p(�jd) =
p(dj�)p(�)

p(d)

where p(d) is treated as a constant to give
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Pq = p(!qjq ; Hq) p(q) p(Hq):

This expression is di�cult to maximise analytically,
and so a stochastic optimisation technique is employed.
We apply a local Metropolis-Hastings algorithm [3] to
sample for the parameters of one note whilst keeping the
others constant (see [4] for a deterministic approach.)
For this we sample from the full conditional posterior
distributions for each note. De�ning the q-th note resid-
ual as

rq = d�

QX
i=1

i6=q

iGibi;

the conditional posterior can be written as

p(�q; �j��(q);d) /
Pq
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It is possible to marginalise the amplitude parameters
bq, which is desirable due to the high posterior corre-
lation between !q and bq ; another bene�t is that the
size of the parameter space to be optimised is reduced
signi�cantly. We can also marginalise �, in a similar
manner to [10], to yield1

p(!q; Hq ; qj ��(q);d) /
Pq

B�Mq

R���GT
qGq

��q2 (3)
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�1
G

T
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Here, b̂q is the familiar least-squares expression for the
harmonic amplitudes, and fq is the projection of the
residual rq onto the model given by the parameters

1This is approximate, due to the limits of integration on bq
and �.

fb̂q; !q; Hqg. The dominant term of (3) is the expression
in the denominator which is an energy-�tting function
| as the energy in the projection approaches that of
the residual, the term tends to zero. Most of the other
terms are model order dependent, and penalise over�t-
ting. The use of a conditional distribution based on
the residual rq rather than a joint distribution based
on the signal d has the advantage that execution time
scales linearly with the number of notes Q rather than
as Q3, and the GT

qGq matrices are less prone to ill-
conditioning.2

3 CHOICE OF TRANSITION KERNELS

A novel choice of transition kernels is presented here for
the generation of samples of !q; Hq and q from their
conditional distributions. The kernels generate trial pa-
rameter values from a proposal density, which are then
accepted (by theM-H acceptance function) on the basis
of how they a�ect the conditional posterior.

The form of (3) is a likely to be a complex multi-modal
distribution with sharp peaks. In order to ensure that
the parameter space is explored e�ciently, we combine
a number of transition kernels.

The �rst exploits the nature of a harmonic series and
proposes a new value which is some multiple of the cur-
rent value. The factor is chosen randomly from a set of
values such that the proposal distribution is reversible;
the set f 1

3
; 1
2
; 2
3
; 3
2
; 2; 3g works well in practice.

The second transition kernel for !q is an independence
sampler whose proposal distribution is independent of
the current state [12]. This approach has been recently
used for sinusoidal models with a proposal density based
on the periodogram [1], to coerce the !q samples into
high probability regions. We adopt a similar technique,
but instead use a harmonic transform (HT) of the resid-
uals in the proposal density. We de�ne a P -th orderHT,
Hk;P (x) as

Xp[k] =

Nf�1X
n=0

x[n] e�j2�pkn=Nf

Hk;P (x) =

PX
p=1

X�

p [k]Xp[k]

and the proposal distribution as

q(!) = c

KX
k=1

�(! � k�!)Hk;P (rq)

where c = 1=
PK

k=1Hk;P (x), K = bNf=P c and �! is
the frequency bin spacing, since it can be shown, for

2Since the jointGmatrix would be composed of the catenation
of each Gq, and if any harmonic of one note is close to a harmonic
of another note, then GTG would be ill-conditioned, producing
nonsensically large b̂ estimates.
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which has its modes in the same locations as (3). The
HT can be calculated e�ciently from the FFT since
X1[k] is the DFT of x and Xp[k] = X1[pk]:
The third transition kernel is a perturbation step |

a random-walk sampler with a small variance | which
ensures that the Markov chain is ergodic [7, 8]. The
combination of all three kernels ensure that the Markov
chain �nds the prominent modes in the distribution,
and other harmonically related modes, whilst perform-
ing small steps to �nd local maxima.
The transition kernels for Hq can be much simpler

than those for !q| good results were obtained from
combining an independence sampler with a uniform
probability distribution and a random-walk sampler.
Sampling for q is a matter of using the trial value
�q = 1 � kq since the M-H acceptance function then
considers the posterior for both states.
It was also found that octave errors (i.e., frequency

estimates of half or double the true value) can be re-
duced by including a M-H step which proposes a joint
move for !q and Hq . This step takes advantage of the
non-uniqueness of the harmonic representation, e.g., if
the fundamental frequency is halved and the number
of harmonics is doubled, then the new parameters will
generate a similar or identical fq . If a move is made
which reduces Hq and increases !q whilst keeping fq al-
most constant, then this may yield a higher posterior
probability due to the lower model order.3

4 OBTAINING MAP ESTIMATES

The Bayesian inference we wish to perform on the chain
of samples is simply to �nd the MAP parameter esti-
mates. The output of the Markov chain is a sequence
of (dependent) samples drawn from the joint posterior.
The numerical value of the joint posterior for any set
of parameter values in the chain can be calculated from
the marginalisation of the linear parameters and error
standard deviation from the full joint posterior (1),

p(f!1; H1; 1g; : : : ; f!Q; HQ; Qgjd) =Z
� � �

Z
p(�jd) db1 : : : dbQ d�:

For most practical purposes,MAP parameter estimates
can be obtained by histogramming the Markov chain
output, although these are e�ectively marginal rather
than joint parameter estimates.

3This is particularly true if a number of the harmonics are of
very low amplitude. For example if all the odd harmonics are low,
it suggests there is an octave error and the frequency should be
doubled.

5 RESULTS

We analysed an extract consisting of the superposi-
tion of two completely independent monophonic musical
phrases, one vocal and the other a played by a saxo-
phone. Both are reasonably legato (i.e., have a smooth
pitch variation) and neither have sharp initial transients.
Figure 1 shows the pitch variation over time | the x axis
shows the window number (window length of 1000 sam-
ples with 50% overlap, at a rate of 88.2 frames/sec) and
the y axis shows the fundamental frequency in Hz. The
top plot shows the pitch variation, obtained by mono-
phonic analysis (Q = 1) of each part separately using
our algorithm, and the lower plot shows the results of
the algorithm applied to the sum of the signals.
A simple prior was imposed on !q, giving a higher

probability to values close to the mean of the frequency
in the previous 4 frames, which improved the continu-
ity of the frequency tracks and eliminated a few octave
errors. The algorithm performed well in this example,
even over the closely-spaced region in frames 200{250.
The loss of detection in frames 300{330 is due to the
presence of an unvoiced sound in the vocal part.4

6 FUTURE WORK

Future work will focus on the generalisation of the model
to better represent `real-world' data, e.g., AR modelling
of residuals, variable waveform start and end-points, in-
harmonicity, and amplitude and frequency variations.
Higher level modelling, particularly joint estimation
over a number of frames, will also be required to produce
better continuity of frequency tracks.

7 CONCLUSIONS

We have presented a method of estimating the parame-
ters of the linear combination of an unknown number of
harmonic signals. The use of indicator variables implic-
itly represents the model order, and maximum a poste-

riori estimation of the model parameters and indicator
variables is performed with a Metropolis-Hastings algo-
rithm.
A novel choice of transition kernels is proposed for

the frequency and harmonic number parameters, which
combine di�erent proposal distributions to exploit the
structure of the posterior distribution of a harmonic sig-
nal, and perform di�erent types of parameter moves to
explore the whole parameter space.
Other envisaged applications of this method include

interpolation, coding, enhancement and restoration of
musical material.
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Figure 1: Frequency tracks over time for two superimposed monophonic musical extracts.
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