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ABSTRACT

In this paper we address the problem of selecting the
best subset of predictors in linear models from a given
set of predictors. In computing the posterior probabili-
ties of the various models, we propose to use the method
of reversible jump Markov chain Monte Carlo sampling
which cyclicly sweeps through the set of possible pre-
dictors and includes or removes them from the model
one at a time. Special emphasis is given to a scheme
that does not require sampling of the model coe�cients
and is based on predictive densities. Numerical results
are provided that show the performance of the proposed
approach.

1 INTRODUCTION

The problem of variable selection is an old one, and it
typically arises during model building. The most widely
used models in practice are linear regressions, where a
set of observed data is described by a family of explana-
tory variables or predictors with linear relationships. In
general then, all the variables are considered as candi-
dates for the data model, and the objective is to choose
those that are, indeed, explanatory. In signal process-
ing there are many problems that can be cast as ones of
variable selection, including detection of number of re-
ections in radar or sonar [8], determining the relevant
parameters of time varying models such as time-varying
autoregressions [7], [12], or choosing the terms of ex-
pansion series used in representing nonlinear systems
[9], [11].
The literature of variable selection is abundant. Many

procedures have been proposed and thoroughly investi-
gated. Some of them have been developed within the
classical hypothesis testing framework, others are based
on residual sum of square rules, and a third group ex-
ploits information criteria (such as the AIC and BIC),
[10]. Recently, a new approach has been proposed which
uses a Markov chain Monte Carlo sampling (MCMC)
technique (in particular Gibbs sampling) to compute the
posterior probabilities of the most promising models [4].
The idea there is to put a hierarchical mixture prior on
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the model coe�cients which allows the formation of a
posterior used by the Gibbs sampler. From the drawn
samples of this distribution the most promising models
are readily identi�ed as the ones which appear most fre-
quently. A related Bayesian variable selection method
was reported in [2].
Here we propose a di�erent approach, based on a re-

versible jump MCMC sampling scheme [6]. Each move
of the sampler represents a removal from or inclusion of
a predictor to the model. The sampler randomly sweeps
the set of predictors and at the end of the sweep, the
visited model is recorded. The most frequently visited
model is the `best' model. To reduce the dimensionality
of the sampling spaces of the samplers, most or all of
the signal and noise parameters are integrated out, and
predictive densities are formed. The samplers have been
tested, and we provide some numerical results.

2 PROBLEM STATEMENT

Let H = fh1;h2; � � � ;hqg, represent a set of predictors
whose elements are used to model a data record y ac-
cording to
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where h�i 2 H, p < q, the ��i 's are unknown model
coe�cients, and � is an error vector. All the vectors are
of dimension N �1. The main task is to choose the best
subset of predictors from the available set, where the
size of the subset p is also unknown. Obviously, this is
a special type of a model selection problem, where the
total number of models is 2q.

3 VARIABLE SELECTION BY A

REVERSIBLE JUMP MCMC APPROACH

In situations where the number of variables is even mod-
erately high, comparison of all the models is computa-
tionally prohibitive. In this paper we propose an ap-
proach that exploits the reversible jump MCMC sam-
pler, which is a generalization of the standard MCMC
method [5]. Its main feature is that it allows for
jumps between model spaces in addition to the regu-
lar moves within a speci�c model space. It is based on
the Metropolis-Hastings method and is implemented in



the usual way, where �rst, the probability of a move ac-
ceptance is computed, followed by a decision whether
to accept the move or not. For example, if the current
model is Mj with parameter space �j, and a move m
is proposed from �j 2 �j to �k 2 �k, where �k is the
parameter space of a higher dimensional modelMk, the
acceptance probability is obtained from

Pm = min
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where rm(�j) is the probability of choosing move type
m when in state �j , u is a random vector independent
of �j, and g(u) is a density function of u. The proposed
point in �k is obtained by using an invertible function
�k(�j;u), and the factor j@�k=@(�j ;u)j is the Jacobian
arising from the proposed move. If there is a reverse
move, the evaluation of Pm is done similarly. It should
be noted that in (2), dimension matching is imposed
and detailed balance is retained. It is also important
that the so constructed Markov chains are irreducible
and aperiodic.

We propose to use the reversible jump sampler for
variable selection with a scheme that is implemented
in one of two ways. With the �rst one, no sampling
from the parameters spaces takes place, whereas with
the second, only a sampling of a visited variable is car-
ried out. Each variable is visited once during a sweep,
where a sweep consists of a movement through the com-
plete variable space in a random order. A brief summary
of the procedure is given by the following pseudo code:

Beginning of a new sweep

Randomly choose a new variable

If variable in the model

Propose a move for its removal

If move accepted

Variable excluded from the model

Else

Variable stays in the model

End

Else

Propose a move for its inclusion

If move accepted

Variable included in the model

Else

Variable stays out of the model

End

End

If all variables have been visited

Record the model and start a new sweep

Else

Go back and randomly choose a new variable

End

End of sweep

4 IMPLEMENTATION

Here we show how we can implement the proposed
scheme without sampling from the parameter space. We
use uninformative priors for the unknown parameters,
and form predictive densities based on a portion of the
data [1], [3]. That is, the data are partitioned into es-
timation and validation subsets, ye and yv, where the
estimation subset is used to obtain proper priors for the
parameters, and the validation subset for obtaining the
likelihood of the model.
The acceptance probability of the reversible jump

MCMC is then computed from

Pm = min

�
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where the predictive density f(yv jye;Mk) is given by
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and the predictive density f(yv jye;Mj) is similarly de-
�ned. In (4), pk is the number of predictors in the model
Mk, n is the length of the vector ye, Hk is an N � pk
matrix whose columns are the predictors of the model
Mk, and P

?

k is a projection matrix obtained by

P?k = I �Hk

�
HT
kHk

��1
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The matrixHke is of dimension n�pk and can be de�ned
to be equal to the �rst n rows of Hk. The projection
matrix P?ke is formed from Hke similarly as P?k from
Hk in (5).

5 SIMULATION RESULTS

The approach was tested on a set of synthesized data
generated by models similar to those in [4]. There were
three experiments. In the �rst one the data were ob-
tained from

y = h4�4 + h5�5 + � (6)

where �4 = 1, �5 = 1:2, and � � N (0; �2I), with
� = 2:5. The number of candidate predictors q was
5, so the total number of models was 32. The length of
the observed data vector was N = 60. The predictors
were independent and identically distributed according
to a multivariate Gaussian density, hi � N (0; I), and
therefore they were uncorrelated. Thus, the true model
included only two variables out of the �ve. The signal-
to-noise ratio for predictor h4 was almost �8 dB, and
for predictor h5 it was somewhat less than �6 dB. The



model coe�cients probability

�4 and �5 0.7330

�3, �4, and �5 0.1510

�5 0.0360

Table 1: Performance of the reversible jump sampler in
experiment one. The entries in the left column repre-
sent the nonzero coe�cients of the best three models,
and the numbers in the right column are the estimated
posterior probabilities of the respective models. The
nonzero coe�cients of the correct model were �4 and �5.
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Figure 1: Marginal posterior probabilities of the predic-
tors in experiment one.

least-squares estimate of the model coe�cient vector �

was �̂
T
= [�0:0911 � 0:2275 0:5100 1:0994 1:3421].

We used the reversible jump MCMC sampler where
no sampling from the parameter space took place. We
ran the sampler for 1020 sweeps, and from the obtained
posterior we could construct various estimators. Some
results are shown in Table 1 and Figure 1. The entries
of the left column in the table are the variables of the
most frequently visited models, and the numbers in the
right column are the estimated posterior probabilities
of these models. The probability of the correct model
clearly stands out from the second and third best mod-
els. In the �gure, the marginal posterior probabilities
of the respective predictors are shown. Although these
probabilities cannot be used for deciding which predic-
tors to be included in the model, it is striking that the
relevant predictors have much higher probabilities than
the remaining ones.
In the next experiment the setting was the same

except that the third predictor was de�ned by h3 =

model coe�cients probability

�4 and �5 0.4240

�3 and �4 0.2110

�5 0.0890

Table 2: Performance of the reversible jump sampler in
experiment two. The entries in the left column repre-
sent the nonzero coe�cients of the best three models,
and the numbers in the right column are the estimated
posterior probabilities of the respective models. The
nonzero coe�cients of the correct model were �4 and �5.
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Figure 2: Marginal posterior probabilities of the predic-
tors in experiment two.

h5 + 0:15w, where w � N (0; I). This introduced cor-
relation between the third and �fth predictors (with
a correlation coe�cient equal to 0.989). The least
squares estimate of the model coe�cient vector � was

�̂
T
= [�0:0805 � 0:2064 0:8032 1:2116 0:2300]. It

is interesting to observe that the estimate of �3 (whose
true value was 0) was greater than the estimate of �5
(with true value 1.2). Again, 1020 sweeps were made
of which the �rst 20 were discarded. The results of the
reversible jump MCMC sampling are shown in Figure 2
and Table 2.
The strong correlation between h3 and h5 notwith-

standing, the reversible jump MCMC was able to pick
the correct model most frequently. Also, the marginal
probability of h5 is greater than the marginal probabil-
ity of h3, regardless of the fact that �̂5 < �̂3.
Finally in the third experiment, we simulated a sce-

nario with a fairly large number of predictors. Again
the model was

y =H� + �: (7)
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Figure 3: Marginal posterior probabilities of the predic-
tors in experiment three.

We chose q = 40, and the number of samples was
N = 120. The disturbance vector � � N (0; �2I), with
� = 2. The predictors were de�ned by hi = ui + w,
where the ui's were independent and identically dis-
tributed according to a multivariate Gaussian density
with mean zero and covariance matrix I. The vector
w was independent from the ui's and came from the
same distribution. Therefore the pairwise correlation
between the predictors was 0.5 The model coe�cients
took the following values: �1 = �2 = � � � = �10 = 0,
�11 = �12 = � � � = �20 = 1, �21 = �22 = � � � = �30 = 2,
and �31 = �32 = � � � = �40 = 3. The number of sweeps
was 1020, and the �rst 20 samples were discarded. The
most frequently visitied model was the correct model,
and the estimated posterior probability of the correct
model was 0.3040. The marginal posterior probabili-
ties of the various predictors in the model are shown in
Figure 3. The predictors that are indeed in the model
have marginal posterior probabilities very close to one,
whereas those which are not in the model, have signi�-
cantly smaller posterior probabilities.

6 CONCLUSION

Reversible jump MCMC procedures for variable selec-
tion in linear models were proposed. The emphasis was
on a scheme based on predictive densities which does not
require sampling from the parameter space. Results of
several tests have been presented, and they have all been
excellent. These tests, however, have been carried out
on limited number of experiments and with relatively
small number of predictors. It is therefore important to
investigate the procedure on more di�cult tasks, such as
those with much larger number of variables. Compar-
isons with existing methods in terms of accuracy and

computational requirements will also be valuable.
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